Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
import numpy as np | |
def get_sentiment(text): | |
sentiment_pipeline=pipeline('sentiment-analysis') | |
result=sentiment_pipeline(text) | |
output = gr.Textbox(label="Output Box") | |
return result[0]['label'],result[0]['score'] | |
def summraztion(text): | |
summary_pipe = pipeline('summarization',model="cnicu/t5-small-booksum") | |
result=summary_pipe(text) | |
output = gr.Textbox(label="Output Box") | |
return result[0]['summary_text'] | |
def chat_bot(text,histroy): | |
chat_pip=pipeline('text-generation') | |
mes=chat_pip(text) | |
return mes[0]['generated_text'] | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") | |
def transcribe(audio): | |
sr, y = audio | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
return transcriber({"sampling_rate": sr, "raw": y})["text"] | |
Audio = gr.Interface( | |
transcribe, | |
gr.Audio(sources=["microphone"]), | |
"text", | |
) | |
sentiment_a = gr.Interface(fn=get_sentiment , inputs=gr.Textbox(label="Enter the review ") , outputs=[gr.Textbox(label="sentiment") , gr.Textbox(label="Score")],description='sentiment-analysis') | |
summraztion = gr.Interface(fn=summraztion , inputs=gr.Textbox(label="Enter the text ") , outputs=gr.Textbox(label="summraztion") ,description='summraztion') | |
chatBot=gr.ChatInterface(chat_bot) | |
demo = gr.TabbedInterface([sentiment_a, summraztion,chatBot,Audio], ["Sentiment Analysis", "Summraztion","ChatBot",'Audio']) | |
demo.launch(debug=True) |