Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# https://github.com/kohya-ss/sd-scripts/blob/main/finetune/tag_images_by_wd14_tagger.py | |
import csv | |
import os | |
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
from pathlib import Path | |
import onnx | |
import onnxruntime as ort | |
# from wd14 tagger | |
IMAGE_SIZE = 448 | |
model = None # Initialize model variable | |
def convert_array_to_bgr(array): | |
""" | |
Convert a NumPy array image to BGR format regardless of its original format. | |
Parameters: | |
- array: NumPy array of the image. | |
Returns: | |
- A NumPy array representing the image in BGR format. | |
""" | |
# グレースケール画像(2次元配列) | |
if array.ndim == 2: | |
# グレースケールをBGRに変換(3チャンネルに拡張) | |
bgr_array = np.stack((array,) * 3, axis=-1) | |
# RGBAまたはRGB画像(3次元配列) | |
elif array.ndim == 3: | |
# RGBA画像の場合、アルファチャンネルを削除 | |
if array.shape[2] == 4: | |
array = array[:, :, :3] | |
# RGBをBGRに変換 | |
bgr_array = array[:, :, ::-1] | |
else: | |
raise ValueError("Unsupported array shape.") | |
return bgr_array | |
def preprocess_image(image): | |
image = np.array(image) | |
image = convert_array_to_bgr(image) | |
size = max(image.shape[0:2]) | |
pad_x = size - image.shape[1] | |
pad_y = size - image.shape[0] | |
pad_l = pad_x // 2 | |
pad_t = pad_y // 2 | |
image = np.pad(image, ((pad_t, pad_y - pad_t), (pad_l, pad_x - pad_l), (0, 0)), mode="constant", constant_values=255) | |
interp = cv2.INTER_AREA if size > IMAGE_SIZE else cv2.INTER_LANCZOS4 | |
image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE), interpolation=interp) | |
image = image.astype(np.float32) | |
return image | |
def modelLoad(model_dir): | |
onnx_path = os.path.join(model_dir, "model.onnx") | |
# 実行プロバイダーをCPUのみに指定 | |
providers = ['CPUExecutionProvider'] | |
# InferenceSessionの作成時にプロバイダーのリストを指定 | |
ort_session = ort.InferenceSession(onnx_path, providers=providers) | |
input_name = ort_session.get_inputs()[0].name | |
# 実際に使用されているプロバイダーを取得して表示 | |
actual_provider = ort_session.get_providers()[0] # 使用されているプロバイダー | |
print(f"Using provider: {actual_provider}") | |
return [ort_session, input_name] | |
def analysis(image_path, model_dir, model): | |
ort_session = model[0] | |
input_name = model[1] | |
with open(os.path.join(model_dir, "selected_tags.csv"), "r", encoding="utf-8") as f: | |
reader = csv.reader(f) | |
l = [row for row in reader] | |
header = l[0] # tag_id,name,category,count | |
rows = l[1:] | |
assert header[0] == "tag_id" and header[1] == "name" and header[2] == "category", f"unexpected csv format: {header}" | |
general_tags = [row[1] for row in rows[1:] if row[2] == "0"] | |
character_tags = [row[1] for row in rows[1:] if row[2] == "4"] | |
tag_freq = {} | |
undesired_tags = ["transparent background"] | |
image_pil = Image.open(image_path) | |
image_preprocessed = preprocess_image(image_pil) | |
image_preprocessed = np.expand_dims(image_preprocessed, axis=0) | |
# 推論を実行 | |
prob = ort_session.run(None, {input_name: image_preprocessed})[0][0] | |
# タグを生成 | |
combined_tags = [] | |
general_tag_text = "" | |
character_tag_text = "" | |
remove_underscore = True | |
caption_separator = ", " | |
general_threshold = 0.35 | |
character_threshold = 0.35 | |
for i, p in enumerate(prob[4:]): | |
if i < len(general_tags) and p >= general_threshold: | |
tag_name = general_tags[i] | |
if remove_underscore and len(tag_name) > 3: # ignore emoji tags like >_< and ^_^ | |
tag_name = tag_name.replace("_", " ") | |
if tag_name not in undesired_tags: | |
tag_freq[tag_name] = tag_freq.get(tag_name, 0) + 1 | |
general_tag_text += caption_separator + tag_name | |
combined_tags.append(tag_name) | |
elif i >= len(general_tags) and p >= character_threshold: | |
tag_name = character_tags[i - len(general_tags)] | |
if remove_underscore and len(tag_name) > 3: | |
tag_name = tag_name.replace("_", " ") | |
if tag_name not in undesired_tags: | |
tag_freq[tag_name] = tag_freq.get(tag_name, 0) + 1 | |
character_tag_text += caption_separator + tag_name | |
combined_tags.append(tag_name) | |
# 先頭のカンマを取る | |
if len(general_tag_text) > 0: | |
general_tag_text = general_tag_text[len(caption_separator) :] | |
if len(character_tag_text) > 0: | |
character_tag_text = character_tag_text[len(caption_separator) :] | |
tag_text = caption_separator.join(combined_tags) | |
return tag_text |