svghenfpkob / app.py
HonestAnnie's picture
tuk# Please enter the commit message for your changes. Lines starting
10f043b
raw
history blame
4.96 kB
import os
import requests
import gradio as gr
import chromadb
import json
import pandas as pd
from sentence_transformers import SentenceTransformer
from spaces import GPU
@spaces.GPU
def get_embeddings(text, task):
model = SentenceTransformer("Linq-AI-Research/Linq-Embed-Mistral", use_auth_token=os.getenv("HF_TOKEN"))
task = "Given a question, retrieve passages that answer the question"
prompt = f"Instruct: {task}\nQuery: {text}" # Use text here
query_embeddings = model.encode([prompt], convert_to_tensor=True) # Ensure it's a list
return query_embeddings
# Initialize a persistent Chroma client and retrieve collection
client = chromadb.PersistentClient(path="./chroma")
collection = client.get_collection(name="phil_de")
authors_list = ["Ludwig Wittgenstein", "Sigmund Freud", "Marcus Aurelius", "Friedrich Nietzsche", "Epiktet", "Ernst Jünger", "Georg Christoph Lichtenberg", "Balthasar Gracian", "Hannah Arendt", "Erich Fromm", "Albert Camus"]
#authors_list = ["Friedrich Nietzsche", "Joscha Bach"]
def query_chroma(embeddings, authors, num_results=10):
try:
where_filter = {"author": {"$in": authors}} if authors else {}
results = collection.query(
query_embeddings=[embeddings],
n_results=num_results,
where=where_filter,
include=["documents", "metadatas", "distances"]
)
ids = results.get('ids', [[]])[0]
metadatas = results.get('metadatas', [[]])[0]
documents = results.get('documents', [[]])[0]
distances = results.get('distances', [[]])[0]
formatted_results = []
for id_, metadata, document_text, distance in zip(ids, metadatas, documents, distances):
result_dict = {
"id": id_,
"author": metadata.get('author', 'Unknown author'),
"book": metadata.get('book', 'Unknown book'),
"section": metadata.get('section', 'Unknown section'),
"title": metadata.get('title', 'Untitled'),
"text": document_text,
"distance": distance
}
formatted_results.append(result_dict)
return formatted_results
except Exception as e:
return f"Failed to query the database: {str(e)}"
# Main function
def perform_query(query, task, author, num_results):
embeddings = get_embeddings(query, task)
initial_results = query_chroma(embeddings, author, num_results)
results = [(f"{res['author']}, {res['book']}, Distance: {res['distance']}", res['text'], res['id']) for res in initial_results]
updates = []
for meta, text, id_ in results:
markdown_content = f"**{meta}**\n\n{text}"
updates.append(gr.update(visible=True, value=markdown_content))
updates.append(gr.update(visible=True, value="Flag", elem_id=f"flag-{len(updates)//2}"))
updates.append(gr.update(visible=False, value=id_)) # Hide the ID textbox
updates += [gr.update(visible=False)] * (3 * (max_textboxes - len(results) // 3))
return updates
# Initialize the CSVLogger callback for flagging
callback = gr.CSVLogger()
def flag_output(query, output_text, output_id):
callback.flag([query, output_text, output_id])
# Gradio interface
max_textboxes = 30
with gr.Blocks(css=".custom-markdown { border: 1px solid #ccc; padding: 10px; border-radius: 5px; }") as demo:
gr.Markdown("Enter your query, filter authors (default is all), click **Search** to search. Click **Flag** if a result is relevant to the query and interesting to you. Try reranking the results.")
with gr.Row():
with gr.Column():
inp = gr.Textbox(label="query", placeholder="Enter thought...")
author_inp = gr.Dropdown(label="authors", choices=authors_list, multiselect=True)
num_results_inp = gr.Number(label="number of results", value=10, step=1, minimum=1, maximum=max_textboxes)
btn = gr.Button("Search")
components = []
textboxes = []
flag_buttons = []
ids = []
for _ in range(max_textboxes):
with gr.Column() as col:
text_out = gr.Markdown(visible=False, elem_classes="custom-markdown")
flag_btn = gr.Button(value="Flag", visible=False)
id_out = gr.Textbox(visible=False)
components.extend([text_out, flag_btn, id_out])
textboxes.append(text_out)
flag_buttons.append(flag_btn)
ids.append(id_out)
callback.setup([inp] + textboxes + ids, "flagged_data_points")
btn.click(
fn=perform_query,
inputs=[inp, author_inp, num_results_inp],
outputs=components
)
for i in range(0, len(components), 3):
flag_buttons[i//3].click(
fn=flag_output,
inputs=[inp, textboxes[i//3], ids[i//3]],
outputs=[],
preprocess=False
)
demo.launch()