svghenfpkob / app.py
HonestAnnie's picture
working
2a5653d
raw
history blame
4.28 kB
import os
import gradio as gr
import chromadb
from sentence_transformers import SentenceTransformer
import spaces
@spaces.GPU
def get_embeddings(queries, task):
model = SentenceTransformer("Linq-AI-Research/Linq-Embed-Mistral", use_auth_token=os.getenv("HF_TOKEN"))
prompts = [f"Instruct: {task}\nQuery: {query}" for query in queries]
query_embeddings = model.encode(prompts)
return query_embeddings
# Initialize a persistent Chroma client and retrieve collection
client = chromadb.PersistentClient(path="./chroma")
collection_de = client.get_collection(name="phil_de")
collection_en = client.get_collection(name="phil_en")
authors_list_de = ["Ludwig Wittgenstein", "Sigmund Freud", "Marcus Aurelius", "Friedrich Nietzsche", "Epiktet", "Ernst Jünger", "Georg Christoph Lichtenberg", "Balthasar Gracian", "Hannah Arendt", "Erich Fromm", "Albert Camus"]
authors_list_en = ["Friedrich Nietzsche", "Joscha Bach"]
def query_chroma(collection, embedding, authors):
try:
where_filter = {"author": {"$in": authors}} if authors else {}
# Directly use the embedding provided, already in list format suitable for the query
results = collection.query(
query_embeddings=[embedding.tolist()], # Ensure embedding is properly formatted
n_results=10,
where=where_filter,
include=["documents", "metadatas", "distances"]
)
ids = results.get('ids', [[]])[0]
metadatas = results.get('metadatas', [[]])[0]
documents = results.get('documents', [[]])[0]
distances = results.get('distances', [[]])[0]
formatted_results = []
for id_, metadata, document_text, distance in zip(ids, metadatas, documents, distances):
result_dict = {
"id": id_,
"author": metadata.get('author', 'Unknown author'),
"book": metadata.get('book', 'Unknown book'),
"section": metadata.get('section', 'Unknown section'),
"title": metadata.get('title', 'Untitled'),
"text": document_text,
"distance": distance
}
formatted_results.append(result_dict)
return formatted_results
except Exception as e:
return [{"error": str(e)}]
def update_authors(database):
return gr.update(choices=authors_list_de if database == "German" else authors_list_en)
with gr.Blocks() as demo:
gr.Markdown("Enter your query, filter authors (default is all), click **Search** to search.")
database_inp = gr.Dropdown(label="Database", choices=["English", "German"], value="German")
author_inp = gr.Dropdown(label="Authors", choices=authors_list_de, multiselect=True)
inp = gr.Textbox(label="Query", placeholder="Enter questions separated by semicolons...")
btn = gr.Button("Search")
results = gr.State() # Store results in a State component
def perform_query(queries, authors, database):
task = "Given a question, retrieve passages that answer the question"
queries = queries.split(';')
embeddings = get_embeddings(queries, task)
collection = collection_de if database == "German" else collection_en
results_data = []
for query, embedding in zip(queries, embeddings):
res = query_chroma(collection, embedding, authors)
results_data.append((query, res))
return results_data
btn.click(
perform_query,
inputs=[inp, author_inp, database_inp],
outputs=[results]
)
@gr.render(inputs=[results])
def display_accordion(data):
output_blocks = []
for query, res in data:
with gr.Accordion(query) as acc:
if not res:
markdown_contents = "No results found."
elif "error" in res[0]:
markdown_contents = f"Error retrieving data: {res[0]['error']}"
else:
markdown_contents = "\n".join(f"**{r['author']}, {r['book']}**\n\n{r['text']}" for r in res)
gr.Markdown(markdown_contents)
database_inp.change(
fn=lambda database: update_authors(database),
inputs=[database_inp],
outputs=[author_inp]
)
demo.launch()