File size: 4,222 Bytes
f3f94c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd9523
f3f94c7
 
 
 
9a97b4c
 
f3f94c7
 
 
 
96be33e
e2ebf36
f3f94c7
 
9a97b4c
 
f3f94c7
124ff35
f3f94c7
 
 
 
 
 
16871fc
f3f94c7
 
16871fc
f3f94c7
 
 
 
 
 
54c0124
f3f94c7
 
12000db
f3f94c7
 
419164d
f3f94c7
 
 
9b1a334
419164d
f3f94c7
 
 
12000db
 
 
 
 
 
 
54c0124
61f7e82
12000db
 
 
 
f3f94c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import spaces
import gradio as gr
import torch
from diffusers import (
    AutoencoderKL,
    EulerAncestralDiscreteScheduler,
)
from diffusers.utils import load_image
from replace_bg.model.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from replace_bg.model.controlnet import ControlNetModel
from replace_bg.utilities import resize_image, remove_bg_from_image, paste_fg_over_image, get_control_image_tensor

controlnet = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-BG-Gen", torch_dtype=torch.float16) 
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet, torch_dtype=torch.float16, vae=vae).to('cuda:0')
pipe.scheduler = EulerAncestralDiscreteScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    num_train_timesteps=1000,
    steps_offset=1
)


@spaces.GPU
def generate_(prompt, negative_prompt, control_tensor, num_steps, controlnet_conditioning_scale, seed):
    generator = torch.Generator("cuda").manual_seed(seed)    
    gen_img = pipe(
        negative_prompt=negative_prompt, 
        prompt=prompt,     
        controlnet_conditioning_scale=float(controlnet_conditioning_scale), 
        num_inference_steps=num_steps,
        image = control_tensor,
        generator=generator
    ).images[0]
    
    return gen_img

@spaces.GPU
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
    
    image = resize_image(input_image)
    mask = remove_bg_from_image(image)
    control_tensor = get_control_image_tensor(pipe.vae, image, mask)    
  
    gen_image = generate_(prompt, negative_prompt, control_tensor, num_steps, controlnet_conditioning_scale, seed)
    result_image = paste_fg_over_image(gen_image, image, mask)

    return result_image



block = gr.Blocks().queue()

with block:
    gr.Markdown("## BRIA Background Generation")
    gr.HTML('''
      <p style="margin-bottom: 10px; font-size: 94%">
        This is a demo for ControlNet background generation that using
        <a href="briaai/BRIA-2.3-ControlNet-BG-Gen" target="_blank">BRIA 2.3 text-to-image model</a> as backbone. 
        Trained on licensed data, BRIA 2.3 provide full legal liability coverage for copyright and privacy infringement.
      </p>
    ''')
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(sources='upload', type="pil", label="Upload", elem_id="image_upload", height=600) # None for upload, ctrl+v and webcam
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
            num_steps = gr.Slider(label="Number of steps", minimum=10, maximum=100, value=30, step=1)
            controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
            seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
            run_button = gr.Button(value="Generate")
            
            
        with gr.Column():
            result_gallery = gr.Image(label='Output', type="pil", show_label=True, elem_id="output-img") 
            # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height=600)
    ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])

    gr.Examples(
                examples=[
                    ["./example1.png"],
                    ["./example2.png"],
                    ["./example3.png"],
                    ["./example4.png"],
                ],
                fn=process,
                inputs=[input_image],
                cache_examples=False,
    )


block.launch(debug = True)