OriLib's picture
Update replace_bg/utilities.py
ecc44d5 verified
raw
history blame
2.5 kB
import torch
import numpy as np
from PIL import Image
def resize_image(image)->Image.Image:
pixel_number = 960*960 #1024*1024
granularity_val = 64
ratio = image.size[0] / image.size[1]
width = int((pixel_number * ratio) ** 0.5)
width = width - (width % granularity_val)
height = int(pixel_number / width)
height = height - (height % granularity_val)
return image.resize((width, height))
def get_masked_background_image(image, image_mask)->tuple:
image_mask_pil = image_mask.resize(image.size) # fg is white
image = np.array(image.convert("RGB")).transpose(2, 0, 1).astype(np.float32) / 255.0
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
image[:,image_mask < 0.5] = 0 # mask background
return image, image_mask
def get_control_image_tensor(vae, image, mask)->torch.Tensor:
masked_image, image_mask = get_masked_background_image(image, mask)
masked_image_tensor = torch.from_numpy(masked_image)
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5 # normalize for vae
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda:0")
# encode the image to get the control latents
control_latents = vae.encode(
masked_image_tensor[:, :3, :, :].to(vae.dtype)
).latent_dist.sample()
control_latents = control_latents * vae.config.scaling_factor
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, None, ...].to(device="cuda:0")
mask_tensor = torch.where(mask_tensor > 0.5, 1.0, 0) # binarize the mask
mask_resized = torch.nn.functional.interpolate(mask_tensor, size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
control_tensor = torch.cat([control_latents, mask_resized], dim=1)
return control_tensor
def remove_bg_from_image(image)->Image.Image:
from transformers import pipeline
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
mask = pipe(image, return_mask = True) # outputs a pillow mask
return mask
def paste_fg_over_image(gen_image: Image.Image, orig_image: Image.Image, fg_mask: Image.Image)->Image.Image:
fg_mask = fg_mask.convert("L")
fg_mask = fg_mask.resize(orig_image.size, Image.NEAREST)
gen_image = gen_image.convert("RGBA")
orig_image = orig_image.convert("RGBA")
gen_image.paste(orig_image, (0, 0), fg_mask)
return gen_image.convert("RGB")