Spaces:
Runtime error
Runtime error
File size: 1,239 Bytes
8f37fff 0cbbcf7 8f37fff 42a1798 827ca4c 8f37fff 0cbbcf7 8f37fff 0cbbcf7 8f37fff 0cbbcf7 42a1798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import streamlit as st
import requests
from io import BytesIO
from PIL import Image
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
def load_image(img):
im=Image.open(img)
return im
size=20
extractor = AutoFeatureExtractor.from_pretrained("Hrishikesh332/autotrain-meme-classification-42897109437")
model = AutoModelForImageClassification.from_pretrained("Hrishikesh332/autotrain-meme-classification-42897109437")
st.markdown("<h1 style='text-align: center;'>Memeter 💬</h1>", unsafe_allow_html=True)
st.markdown("---")
with st.sidebar:
st.title("Memometer")
st.caption('''
Memeter is an application used for the classification of whether the images provided is meme or not meme
''', unsafe_allow_html=False)
img = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
def predict(image):
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
scores = outputs.logits.detach().numpy()
return scores
if img is not None:
try:
image = Image.open(BytesIO(img.read()))
s = predict(image)
st.write("Value:", s)
except:
st.write("Pleas do upload the image in the correct format!")
|