Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,54 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
-
import
|
6 |
-
import cv2
|
7 |
import skvideo.io
|
|
|
|
|
|
|
8 |
import torch
|
|
|
|
|
|
|
9 |
import fairseq
|
10 |
from fairseq import checkpoint_utils, options, tasks, utils
|
11 |
from fairseq.dataclass.configs import GenerationConfig
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
import gradio as gr
|
14 |
from pytube import YouTube
|
15 |
-
from base64 import b64encode
|
16 |
-
from tqdm import tqdm
|
17 |
-
from argparse import Namespace
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
"/home/user/app/av_hubert/avhubert",
|
22 |
-
"/home/user/app/video",
|
23 |
-
"/home/user/app/mmod_human_face_detector.dat",
|
24 |
-
"/home/user/app/shape_predictor_68_face_landmarks.dat",
|
25 |
-
"/home/user/app/20words_mean_face.npy",
|
26 |
-
"/home/user/app/roi.mp4"
|
27 |
-
]
|
28 |
-
for path in required_paths:
|
29 |
-
if not os.path.exists(path):
|
30 |
-
raise FileNotFoundError(f"Required path {path} does not exist")
|
31 |
-
|
32 |
-
# Load model and setup task
|
33 |
user_dir = "/home/user/app/av_hubert/avhubert"
|
34 |
-
sys.path.append(user_dir)
|
35 |
utils.import_user_module(Namespace(user_dir=user_dir))
|
36 |
data_dir = "/home/user/app/video"
|
37 |
|
@@ -43,11 +60,6 @@ mouth_roi_path = "/home/user/app/roi.mp4"
|
|
43 |
modalities = ["video"]
|
44 |
gen_subset = "test"
|
45 |
gen_cfg = GenerationConfig(beam=20)
|
46 |
-
|
47 |
-
# Check if the model file exists
|
48 |
-
if not os.path.exists(ckpt_path):
|
49 |
-
raise FileNotFoundError(f"Checkpoint file not found at {ckpt_path}")
|
50 |
-
|
51 |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
|
52 |
models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models]
|
53 |
saved_cfg.task.modalities = modalities
|
@@ -56,7 +68,6 @@ saved_cfg.task.label_dir = data_dir
|
|
56 |
task = tasks.setup_task(saved_cfg.task)
|
57 |
generator = task.build_generator(models, gen_cfg)
|
58 |
|
59 |
-
# Helper Functions
|
60 |
def get_youtube(video_url):
|
61 |
yt = YouTube(video_url)
|
62 |
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
@@ -66,53 +77,61 @@ def get_youtube(video_url):
|
|
66 |
|
67 |
def detect_landmark(image, detector, predictor):
|
68 |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
69 |
-
face_locations
|
70 |
coords = None
|
71 |
-
for face_location in face_locations:
|
72 |
-
|
|
|
|
|
|
|
73 |
shape = predictor(gray, rect)
|
74 |
coords = np.zeros((68, 2), dtype=np.int32)
|
75 |
-
for i in range(68):
|
76 |
coords[i] = (shape.part(i).x, shape.part(i).y)
|
77 |
return coords
|
78 |
|
79 |
-
def
|
80 |
-
|
81 |
-
for i in range(landmarks.shape[1]):
|
82 |
-
if landmarks[:, i, :].size == 0:
|
83 |
-
continue
|
84 |
-
x = np.arange(len(landmarks))
|
85 |
-
y = landmarks[:, i, :]
|
86 |
-
valid = ~np.isnan(y)
|
87 |
-
y[~valid] = np.interp(x[~valid], x[valid], y[valid])
|
88 |
-
return landmarks
|
89 |
-
|
90 |
-
def crop_patch(video_path, landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE, window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96):
|
91 |
-
video_capture = cv2.VideoCapture(video_path)
|
92 |
-
frames = []
|
93 |
-
for landmark in landmarks:
|
94 |
-
ret, frame = video_capture.read()
|
95 |
-
if not ret:
|
96 |
-
break
|
97 |
-
h, w, _ = frame.shape
|
98 |
-
x1, y1, x2, y2 = 100, 100, 200, 200 # Replace with actual ROI based on landmarks
|
99 |
-
roi = frame[y1:y2, x1:x2]
|
100 |
-
roi = cv2.resize(roi, STD_SIZE)
|
101 |
-
frames.append(roi)
|
102 |
-
return frames
|
103 |
-
|
104 |
-
def write_video_ffmpeg(frames, output_path, ffmpeg_path):
|
105 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
106 |
-
height, width = frames[0].shape[:2]
|
107 |
-
out = cv2.VideoWriter(output_path, fourcc, 25, (width, height))
|
108 |
-
for frame in frames:
|
109 |
-
out.write(frame)
|
110 |
-
out.release()
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
if torch.cuda.is_available():
|
117 |
detector = dlib.cnn_face_detection_model_v1(face_detector_path)
|
118 |
else:
|
@@ -122,74 +141,97 @@ def preprocess_video(input_video_path):
|
|
122 |
STD_SIZE = (256, 256)
|
123 |
mean_face_landmarks = np.load(mean_face_path)
|
124 |
stablePntsIDs = [33, 36, 39, 42, 45]
|
125 |
-
|
126 |
-
|
127 |
-
videogen = skvideo.io.vread(input_video_path)
|
128 |
-
frames = np.array([frame for frame in videogen])
|
129 |
-
except Exception as e:
|
130 |
-
raise ValueError(f"Error reading video: {e}")
|
131 |
-
|
132 |
-
if frames.size == 0:
|
133 |
-
raise ValueError("No frames found in video")
|
134 |
-
|
135 |
landmarks = []
|
136 |
for frame in tqdm(frames):
|
137 |
landmark = detect_landmark(frame, detector, predictor)
|
138 |
landmarks.append(landmark)
|
139 |
-
|
140 |
preprocessed_landmarks = landmarks_interpolate(landmarks)
|
141 |
rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE,
|
142 |
-
|
143 |
write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg")
|
144 |
return mouth_roi_path
|
145 |
|
146 |
def predict(process_video):
|
147 |
-
|
148 |
-
raise ValueError("Invalid video path provided.")
|
149 |
-
|
150 |
-
features = []
|
151 |
-
with open(process_video, "rb") as f:
|
152 |
-
data = f.read()
|
153 |
-
features.append(data)
|
154 |
-
|
155 |
-
sample = next(iter(features))
|
156 |
-
output = task.forward(sample)
|
157 |
-
return output
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
video_out = gr.Video(label="Processed Video")
|
172 |
-
text_output = gr.Textbox(label="Prediction")
|
173 |
-
|
174 |
-
with gr.Row():
|
175 |
-
youtube_url_in.render()
|
176 |
-
download_youtube_btn = gr.Button("Download YouTube video")
|
177 |
-
download_youtube_btn.click(get_youtube, [youtube_url_in], [video_in])
|
178 |
-
|
179 |
-
with gr.Row():
|
180 |
-
video_in.render()
|
181 |
-
video_out.render()
|
182 |
-
|
183 |
-
with gr.Row():
|
184 |
-
detect_landmark_btn = gr.Button("Detect Landmark")
|
185 |
-
detect_landmark_btn.click(preprocess_video, [video_in], [video_out])
|
186 |
-
predict_btn = gr.Button("Predict")
|
187 |
-
predict_btn.click(predict, [video_out], [text_output])
|
188 |
-
|
189 |
-
with gr.Row():
|
190 |
-
text_output.render()
|
191 |
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
import json
|
4 |
+
|
5 |
+
|
6 |
+
os.system('git clone https://github.com/facebookresearch/av_hubert.git')
|
7 |
+
os.chdir('/home/user/app/av_hubert')
|
8 |
+
os.system('git submodule init')
|
9 |
+
os.system('git submodule update')
|
10 |
+
os.chdir('/home/user/app/av_hubert/fairseq')
|
11 |
+
os.system('pip install ./')
|
12 |
+
os.system('pip install scipy')
|
13 |
+
os.system('pip install sentencepiece')
|
14 |
+
os.system('pip install python_speech_features')
|
15 |
+
os.system('pip install scikit-video')
|
16 |
+
os.system('pip install transformers')
|
17 |
+
os.system('pip install gradio==3.12')
|
18 |
+
os.system('pip install numpy==1.23.3')
|
19 |
+
|
20 |
+
|
21 |
+
# sys.path.append('/home/user/app/av_hubert')
|
22 |
+
sys.path.append('/home/user/app/av_hubert/avhubert')
|
23 |
+
|
24 |
+
print(sys.path)
|
25 |
+
print(os.listdir())
|
26 |
+
print(sys.argv, type(sys.argv))
|
27 |
+
sys.argv.append('dummy')
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
import dlib, cv2, os
|
32 |
import numpy as np
|
33 |
+
import skvideo
|
|
|
34 |
import skvideo.io
|
35 |
+
from tqdm import tqdm
|
36 |
+
from preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg
|
37 |
+
from base64 import b64encode
|
38 |
import torch
|
39 |
+
import cv2
|
40 |
+
import tempfile
|
41 |
+
from argparse import Namespace
|
42 |
import fairseq
|
43 |
from fairseq import checkpoint_utils, options, tasks, utils
|
44 |
from fairseq.dataclass.configs import GenerationConfig
|
45 |
from huggingface_hub import hf_hub_download
|
46 |
import gradio as gr
|
47 |
from pytube import YouTube
|
|
|
|
|
|
|
48 |
|
49 |
+
# os.chdir('/home/user/app/av_hubert/avhubert')
|
50 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
user_dir = "/home/user/app/av_hubert/avhubert"
|
|
|
52 |
utils.import_user_module(Namespace(user_dir=user_dir))
|
53 |
data_dir = "/home/user/app/video"
|
54 |
|
|
|
60 |
modalities = ["video"]
|
61 |
gen_subset = "test"
|
62 |
gen_cfg = GenerationConfig(beam=20)
|
|
|
|
|
|
|
|
|
|
|
63 |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
|
64 |
models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models]
|
65 |
saved_cfg.task.modalities = modalities
|
|
|
68 |
task = tasks.setup_task(saved_cfg.task)
|
69 |
generator = task.build_generator(models, gen_cfg)
|
70 |
|
|
|
71 |
def get_youtube(video_url):
|
72 |
yt = YouTube(video_url)
|
73 |
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
|
|
77 |
|
78 |
def detect_landmark(image, detector, predictor):
|
79 |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
80 |
+
face_locations = detector(gray, 1)
|
81 |
coords = None
|
82 |
+
for (_, face_location) in enumerate(face_locations):
|
83 |
+
if torch.cuda.is_available():
|
84 |
+
rect = face_location.rect
|
85 |
+
else:
|
86 |
+
rect = face_location
|
87 |
shape = predictor(gray, rect)
|
88 |
coords = np.zeros((68, 2), dtype=np.int32)
|
89 |
+
for i in range(0, 68):
|
90 |
coords[i] = (shape.part(i).x, shape.part(i).y)
|
91 |
return coords
|
92 |
|
93 |
+
# def predict_and_save(process_video):
|
94 |
+
# num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
# tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"]
|
97 |
+
# label_cont = ["DUMMY\n"]
|
98 |
+
# with open(f"{data_dir}/test.tsv", "w") as fo:
|
99 |
+
# fo.write("".join(tsv_cont))
|
100 |
+
# with open(f"{data_dir}/test.wrd", "w") as fo:
|
101 |
+
# fo.write("".join(label_cont))
|
102 |
+
# task.load_dataset(gen_subset, task_cfg=saved_cfg.task)
|
103 |
+
|
104 |
+
# def decode_fn(x):
|
105 |
+
# dictionary = task.target_dictionary
|
106 |
+
# symbols_ignore = generator.symbols_to_strip_from_output
|
107 |
+
# symbols_ignore.add(dictionary.pad())
|
108 |
+
# return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)
|
109 |
+
|
110 |
+
# itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
|
111 |
+
# sample = next(itr)
|
112 |
+
# if torch.cuda.is_available():
|
113 |
+
# sample = utils.move_to_cuda(sample)
|
114 |
+
# hypos = task.inference_step(generator, models, sample)
|
115 |
+
# ref = decode_fn(sample['target'][0].int().cpu())
|
116 |
+
# hypo = hypos[0][0]['tokens'].int().cpu()
|
117 |
+
# hypo = decode_fn(hypo)
|
118 |
|
119 |
+
# # Collect timestamps and texts
|
120 |
+
# transcript = []
|
121 |
+
# for i, (start, end) in enumerate(sample['net_input']['video_lengths'], 1):
|
122 |
+
# start_time = float(start) / 16_000
|
123 |
+
# end_time = float(end) / 16_000
|
124 |
+
# text = hypo[i].strip()
|
125 |
+
# transcript.append({"timestamp": [start_time, end_time], "text": text})
|
126 |
+
|
127 |
+
# # Save transcript to a JSON file
|
128 |
+
# with open('speech_transcript.json', 'w') as outfile:
|
129 |
+
# json.dump(transcript, outfile, indent=4)
|
130 |
+
|
131 |
+
# return hypo
|
132 |
+
|
133 |
+
|
134 |
+
def preprocess_video(input_video_path):
|
135 |
if torch.cuda.is_available():
|
136 |
detector = dlib.cnn_face_detection_model_v1(face_detector_path)
|
137 |
else:
|
|
|
141 |
STD_SIZE = (256, 256)
|
142 |
mean_face_landmarks = np.load(mean_face_path)
|
143 |
stablePntsIDs = [33, 36, 39, 42, 45]
|
144 |
+
videogen = skvideo.io.vread(input_video_path)
|
145 |
+
frames = np.array([frame for frame in videogen])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
landmarks = []
|
147 |
for frame in tqdm(frames):
|
148 |
landmark = detect_landmark(frame, detector, predictor)
|
149 |
landmarks.append(landmark)
|
|
|
150 |
preprocessed_landmarks = landmarks_interpolate(landmarks)
|
151 |
rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE,
|
152 |
+
window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96)
|
153 |
write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg")
|
154 |
return mouth_roi_path
|
155 |
|
156 |
def predict(process_video):
|
157 |
+
num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"]
|
160 |
+
label_cont = ["DUMMY\n"]
|
161 |
+
with open(f"{data_dir}/test.tsv", "w") as fo:
|
162 |
+
fo.write("".join(tsv_cont))
|
163 |
+
with open(f"{data_dir}/test.wrd", "w") as fo:
|
164 |
+
fo.write("".join(label_cont))
|
165 |
+
task.load_dataset(gen_subset, task_cfg=saved_cfg.task)
|
166 |
|
167 |
+
def decode_fn(x):
|
168 |
+
dictionary = task.target_dictionary
|
169 |
+
symbols_ignore = generator.symbols_to_strip_from_output
|
170 |
+
symbols_ignore.add(dictionary.pad())
|
171 |
+
return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
+
itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
|
174 |
+
sample = next(itr)
|
175 |
+
if torch.cuda.is_available():
|
176 |
+
sample = utils.move_to_cuda(sample)
|
177 |
+
hypos = task.inference_step(generator, models, sample)
|
178 |
+
ref = decode_fn(sample['target'][0].int().cpu())
|
179 |
+
hypo = hypos[0][0]['tokens'].int().cpu()
|
180 |
+
hypo = decode_fn(hypo)
|
181 |
+
return hypo
|
182 |
+
|
183 |
+
|
184 |
+
# ---- Gradio Layout -----
|
185 |
+
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
186 |
+
video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True)
|
187 |
+
video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True)
|
188 |
+
demo = gr.Blocks()
|
189 |
+
demo.encrypt = False
|
190 |
+
text_output = gr.Textbox()
|
191 |
|
192 |
+
with demo:
|
193 |
+
gr.Markdown('''
|
194 |
+
<div>
|
195 |
+
<h1 style='text-align: center'>Lip Reading Using Machine learning (Audio-Visual Hidden Unit BERT Model (AV-HuBERT))</h1>
|
196 |
+
</div>
|
197 |
+
''')
|
198 |
+
with gr.Row():
|
199 |
+
gr.Markdown('''
|
200 |
+
### Reading Lip movement with youtube link using Avhubert
|
201 |
+
##### Step 1a. Download video from youtube (Note: the length of video should be less than 10 seconds if not it will be cut and the face should be stable for better result)
|
202 |
+
##### Step 1b. Drag and drop videos to upload directly
|
203 |
+
##### Step 2. Generating landmarks surrounding mouth area
|
204 |
+
##### Step 3. Reading lip movement.
|
205 |
+
''')
|
206 |
+
with gr.Row():
|
207 |
+
gr.Markdown('''
|
208 |
+
### You can test by following examples:
|
209 |
+
''')
|
210 |
+
examples = gr.Examples(examples=
|
211 |
+
[ "https://www.youtube.com/watch?v=ZXVDnuepW2s",
|
212 |
+
"https://www.youtube.com/watch?v=X8_glJn1B8o",
|
213 |
+
"https://www.youtube.com/watch?v=80yqL2KzBVw"],
|
214 |
+
label="Examples", inputs=[youtube_url_in])
|
215 |
+
with gr.Column():
|
216 |
+
youtube_url_in.render()
|
217 |
+
download_youtube_btn = gr.Button("Download Youtube video")
|
218 |
+
download_youtube_btn.click(get_youtube, [youtube_url_in], [
|
219 |
+
video_in])
|
220 |
+
print(video_in)
|
221 |
+
with gr.Row():
|
222 |
+
video_in.render()
|
223 |
+
video_out.render()
|
224 |
+
with gr.Row():
|
225 |
+
detect_landmark_btn = gr.Button("Detect landmark")
|
226 |
+
detect_landmark_btn.click(preprocess_video, [video_in], [
|
227 |
+
video_out])
|
228 |
+
predict_btn = gr.Button("Predict")
|
229 |
+
#predict_btn.click(predict, [video_out], [text_output])
|
230 |
+
predict_btn.click(predict, [video_out], [text_output])
|
231 |
+
with gr.Row():
|
232 |
+
# video_lip = gr.Video(label="Audio Visual Video", mirror_webcam=False)
|
233 |
+
text_output.render()
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
demo.launch(debug=True)
|