|
import os |
|
import json |
|
import tempfile |
|
from pathlib import Path |
|
from concurrent.futures import ThreadPoolExecutor |
|
from typing import List, Dict |
|
from datatrove.io import get_datafolder |
|
from datatrove.utils.stats import MetricStatsDict |
|
import gradio as gr |
|
import tenacity |
|
|
|
def find_folders(base_folder: str, path: str) -> List[str]: |
|
base_folder = get_datafolder(base_folder) |
|
if not base_folder.exists(path): |
|
return [] |
|
return sorted( |
|
[ |
|
folder["name"] |
|
for folder in base_folder.ls(path, detail=True) |
|
if folder["type"] == "directory" and not folder["name"].rstrip("/") == path |
|
] |
|
) |
|
|
|
def find_metrics_folders(base_folder: str) -> List[str]: |
|
base_data_df = get_datafolder(base_folder) |
|
dirs = sorted( |
|
folder |
|
for folder, info in base_data_df.find("", detail=True, maxdepth=1, withdirs=True).items() |
|
if info["type"] == "directory" |
|
) |
|
return sorted(list(set(dirs))) |
|
|
|
def fetch_datasets(base_folder: str): |
|
datasets = sorted(find_metrics_folders(base_folder)) |
|
return datasets, gr.update(choices=datasets, value=None), fetch_groups(base_folder, datasets, None, "union") |
|
|
|
def fetch_groups(base_folder: str, datasets: List[str], old_groups: str, type: str = "intersection"): |
|
if not datasets: |
|
return gr.update(choices=[], value=None) |
|
|
|
with ThreadPoolExecutor() as executor: |
|
GROUPS = list(executor.map(lambda run: [Path(x).name for x in find_folders(base_folder, run)], datasets)) |
|
if len(GROUPS) == 0: |
|
return gr.update(choices=[], value=None) |
|
|
|
if type == "intersection": |
|
new_choices = set.intersection(*(set(g) for g in GROUPS)) |
|
else: |
|
new_choices = set.union(*(set(g) for g in GROUPS)) |
|
value = None |
|
if old_groups: |
|
value = list(set.intersection(new_choices, {old_groups})) |
|
value = value[0] if value else None |
|
|
|
if not value and len(new_choices) == 1: |
|
value = list(new_choices)[0] |
|
|
|
return gr.update(choices=sorted(list(new_choices)), value=value) |
|
|
|
def fetch_metrics(base_folder: str, datasets: List[str], group: str, old_metrics: str, type: str = "intersection"): |
|
if not group: |
|
return gr.update(choices=[], value=None) |
|
|
|
with ThreadPoolExecutor() as executor: |
|
metrics = list( |
|
executor.map(lambda run: [Path(x).name for x in find_folders(base_folder, f"{run}/{group}")], datasets)) |
|
if len(metrics) == 0: |
|
return gr.update(choices=[], value=None) |
|
|
|
if type == "intersection": |
|
new_possibles_choices = set.intersection(*(set(s) for s in metrics)) |
|
else: |
|
new_possibles_choices = set.union(*(set(s) for s in metrics)) |
|
value = None |
|
if old_metrics: |
|
value = list(set.intersection(new_possibles_choices, {old_metrics})) |
|
value = value[0] if value else None |
|
|
|
if not value and len(new_possibles_choices) == 1: |
|
value = list(new_possibles_choices)[0] |
|
|
|
return gr.update(choices=sorted(list(new_possibles_choices)), value=value) |
|
|
|
def reverse_search(base_folder: str, possible_datasets: List[str], grouping: str, metric_name: str) -> str: |
|
with ThreadPoolExecutor() as executor: |
|
found_datasets = list(executor.map( |
|
lambda dataset: dataset if metric_exists(base_folder, dataset, metric_name, grouping) else None, |
|
possible_datasets)) |
|
found_datasets = [dataset for dataset in found_datasets if dataset is not None] |
|
return "\n".join(found_datasets) |
|
|
|
def reverse_search_add(datasets: List[str], reverse_search_results: str) -> List[str]: |
|
datasets = datasets or [] |
|
return sorted(list(set(datasets + reverse_search_results.strip().split("\n")))) |
|
|
|
def metric_exists(base_folder: str, path: str, metric_name: str, group_by: str) -> bool: |
|
base_folder = get_datafolder(base_folder) |
|
return base_folder.exists(f"{path}/{group_by}/{metric_name}/metric.json") |
|
|
|
@tenacity.retry(stop=tenacity.stop_after_attempt(5)) |
|
def load_metrics(base_folder: str, path: str, metric_name: str, group_by: str) -> MetricStatsDict: |
|
base_folder = get_datafolder(base_folder) |
|
with base_folder.open(f"{path}/{group_by}/{metric_name}/metric.json") as f: |
|
json_metric = json.load(f) |
|
return MetricStatsDict.from_dict(json_metric) |
|
|
|
def load_data(dataset_path: str, base_folder: str, grouping: str, metric_name: str) -> MetricStatsDict: |
|
return load_metrics(base_folder, dataset_path, metric_name, grouping) |