Spaces:
Runtime error
Runtime error
File size: 23,367 Bytes
46df0b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import nltk
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import seaborn as sns
import statistics
import utils
import utils.dataset_utils as ds_utils
from data_measurements.tokenize import Tokenize
from data_measurements.labels import labels
from data_measurements.perplexity import perplexity
from data_measurements.lengths import lengths
from data_measurements.text_duplicates import text_duplicates as td
from data_measurements.npmi import npmi
from data_measurements.zipf import zipf
from datasets import load_from_disk
from nltk.corpus import stopwords
from os import mkdir, getenv
from os.path import exists, isdir
from os.path import join as pjoin
from pathlib import Path
from sklearn.feature_extraction.text import CountVectorizer
from utils.dataset_utils import (CNT, LENGTH_FIELD,
TEXT_FIELD, PERPLEXITY_FIELD, PROP,
TEXT_NAN_CNT, TOKENIZED_FIELD, TOT_OPEN_WORDS,
TOT_WORDS, VOCAB, WORD)
logs = utils.prepare_logging(__file__)
# TODO: Read this in depending on chosen language / expand beyond english
nltk.download("stopwords", quiet=True)
_CLOSED_CLASS = (
stopwords.words("english")
+ ["t", "n", "ll", "d", "s"]
+ ["wasn", "weren", "won", "aren", "wouldn", "shouldn", "didn", "don",
"hasn", "ain", "couldn", "doesn", "hadn", "haven", "isn", "mightn",
"mustn", "needn", "shan", "would", "could", "dont"]
+ [str(i) for i in range(0, 99)]
)
IDENTITY_TERMS = [
"man",
"woman",
"non-binary",
"gay",
"lesbian",
"queer",
"trans",
"straight",
"cis",
"she",
"her",
"hers",
"he",
"him",
"his",
"they",
"them",
"their",
"theirs",
"himself",
"herself",
]
# treating inf values as NaN as well
pd.set_option("use_inf_as_na", True)
MIN_VOCAB_COUNT = 10
_NUM_VOCAB_BATCHES = 2000
_TOP_N = 100
class DatasetStatisticsCacheClass:
def __init__(
self,
dset_name,
dset_config,
split_name,
text_field,
label_field,
label_names,
cache_dir="cache_dir",
dataset_cache_dir=None,
use_cache=False,
save=True,
):
### What are we analyzing?
# name of the Hugging Face dataset
self.dset_name = dset_name
# name of the dataset config
self.dset_config = dset_config
# name of the split to analyze
self.split_name = split_name
# which text/feature fields are we analysing?
self.text_field = text_field
## Label variables
# which label fields are we analysing?
self.label_field = label_field
# what are the names of the classes?
self.label_names = label_names
# save label pie chart in the class so it doesn't ge re-computed
self.fig_labels = None
## Hugging Face dataset objects
self.dset = None # original dataset
# HF dataset with all of the self.text_field instances in self.dset
self.text_dset = None
self.dset_peek = None
# HF dataset with text embeddings in the same order as self.text_dset
self.embeddings_dset = None
# HF dataset with all of the self.label_field instances in self.dset
# TODO: Not being used anymore; make sure & remove.
self.label_dset = None
self.length_obj = None
## Data frames
# Tokenized text
self.tokenized_df = None
# Data Frame version of self.label_dset
# TODO: Not being used anymore. Make sure and remove
self.label_df = None
# where are they being cached?
self.label_files = {}
# label pie chart used in the UI
self.fig_labels = None
# results
self.label_results = None
## Caching
if not dataset_cache_dir:
_, self.dataset_cache_dir = ds_utils.get_cache_dir_naming(cache_dir,
dset_name,
dset_config,
split_name,
text_field)
else:
self.dataset_cache_dir = dataset_cache_dir
# Use stored data if there; otherwise calculate afresh
self.use_cache = use_cache
# Save newly calculated results.
self.save = save
self.dset_peek = None
# Tokenized text
self.tokenized_df = None
## Zipf
# Save zipf fig so it doesn't need to be recreated.
self.zipf_fig = None
# Zipf object
self.z = None
## Vocabulary
# Vocabulary with word counts in the dataset
self.vocab_counts_df = None
# Vocabulary filtered to remove stopwords
self.vocab_counts_filtered_df = None
self.sorted_top_vocab_df = None
# Text Duplicates
self.duplicates_results = None
self.duplicates_files = {}
self.dups_frac = 0
self.dups_dict = {}
## Perplexity
self.perplexities_df = None
## Lengths
self.avg_length = None
self.std_length = None
self.length_stats_dict = None
self.length_df = None
self.fig_tok_length = None
self.num_uniq_lengths = 0
## "General" stats
self.general_stats_dict = {}
self.total_words = 0
self.total_open_words = 0
# Number of NaN values (NOT empty strings)
self.text_nan_count = 0
# nPMI
self.npmi_obj = None
# The minimum amount of times a word should occur to be included in
# word-count-based calculations (currently just relevant to nPMI)
self.min_vocab_count = MIN_VOCAB_COUNT
self.hf_dset_cache_dir = pjoin(self.dataset_cache_dir, "base_dset")
self.tokenized_df_fid = pjoin(self.dataset_cache_dir, "tokenized_df.json")
self.text_dset_fid = pjoin(self.dataset_cache_dir, "text_dset")
self.dset_peek_json_fid = pjoin(self.dataset_cache_dir, "dset_peek.json")
## Length cache files
self.length_df_fid = pjoin(self.dataset_cache_dir, "length_df.json")
self.length_stats_json_fid = pjoin(self.dataset_cache_dir, "length_stats.json")
self.vocab_counts_df_fid = pjoin(self.dataset_cache_dir,
"vocab_counts.json")
self.dup_counts_df_fid = pjoin(self.dataset_cache_dir, "dup_counts_df.json")
self.fig_tok_length_fid = pjoin(self.dataset_cache_dir, "fig_tok_length.png")
## General text stats
self.general_stats_json_fid = pjoin(self.dataset_cache_dir,
"general_stats_dict.json")
# Needed for UI
self.sorted_top_vocab_df_fid = pjoin(
self.dataset_cache_dir, "sorted_top_vocab.json"
)
# Set the HuggingFace dataset object with the given arguments.
self.dset = self._get_dataset()
self.text_dset = None
# Defines self.text_dset, a HF Dataset with just the TEXT_FIELD instances in self.dset extracted
self.load_or_prepare_text_dataset()
def _get_dataset(self):
"""
Gets the HuggingFace Dataset object.
First tries to use the given cache directory if specified;
otherwise saves to the given cache directory if specified.
"""
dset = ds_utils.load_truncated_dataset(self.dset_name, self.dset_config,
self.split_name,
cache_dir=self.hf_dset_cache_dir,
save=self.save)
return dset
def load_or_prepare_text_dataset(self, load_only=False):
"""
Prepares the HF dataset text/feature based on given config, split, etc.
Args:
load_only: Whether only a cached dataset can be used.
"""
logs.info("Doing text dset.")
if self.use_cache and exists(self.text_dset_fid):
# load extracted text
self.text_dset = load_from_disk(self.text_dset_fid)
logs.info("Loaded dataset from disk")
logs.info(self.text_dset)
# ...Or load it from the server and store it anew
elif not load_only:
# Defines self.text_dset
self.prepare_text_dset()
if self.save:
# save extracted text instances
logs.info("Saving dataset to disk")
self.text_dset.save_to_disk(self.text_dset_fid)
def prepare_text_dset(self):
logs.info("Working with dataset:")
logs.info(self.dset)
# Extract all text instances from the user-specified self.text_field,
# which is a dataset-specific text/feature field;
# create a new feature called TEXT_FIELD, which is a constant shared
# across DMT logic.
self.text_dset = self.dset.map(
lambda examples: ds_utils.extract_field(
examples, self.text_field, TEXT_FIELD
),
batched=True,
remove_columns=list(self.dset.features),
)
self.text_dset = self.text_dset.filter(lambda ex: ex["text"] is not None)
def load_or_prepare_general_stats(self, load_only=False):
"""
Content for expander_general_stats widget.
Provides statistics for total words, total open words,
the sorted top vocab, the NaN count, and the duplicate count.
Args:
Returns:
"""
# General statistics
# For the general statistics, text duplicates are not saved in their
# own files, but rather just the text duplicate fraction is saved in the
# "general" file. We therefore set save=False for
# the text duplicate files in this case.
# Similarly, we don't get the full list of duplicates
# in general stats, so set list_duplicates to False
self.load_or_prepare_text_duplicates(load_only=load_only, save=False,
list_duplicates=False)
logs.info("Duplicates results:")
logs.info(self.duplicates_results)
self.general_stats_dict.update(self.duplicates_results)
# TODO: Tighten the rest of this similar to text_duplicates.
if (
self.use_cache
and exists(self.general_stats_json_fid)
and exists(self.sorted_top_vocab_df_fid)
):
logs.info("Loading cached general stats")
self.load_general_stats()
elif not load_only:
logs.info("Preparing general stats")
self.prepare_general_stats()
if self.save:
ds_utils.write_df(self.sorted_top_vocab_df,
self.sorted_top_vocab_df_fid)
ds_utils.write_json(self.general_stats_dict,
self.general_stats_json_fid)
def load_or_prepare_text_lengths(self, load_only=False):
"""
The text length widget relies on this function, which provides
a figure of the text lengths, some text length statistics, and
a text length dataframe to peruse.
Args:
load_only (Bool): Whether we can compute anew, or just need to try to grab cache.
Returns:
"""
# We work with the already tokenized dataset
self.load_or_prepare_tokenized_df()
self.length_obj = lengths.DMTHelper(self, load_only=load_only, save=self.save)
self.length_obj.run_DMT_processing()
## Labels functions
def load_or_prepare_labels(self, load_only=False):
"""Uses a generic Labels class, with attributes specific to this
project as input.
Computes results for each label column,
or else uses what's available in the cache.
Currently supports Datasets with just one label column.
"""
label_obj = labels.DMTHelper(self, load_only=load_only, save=self.save)
self.label_files = label_obj.get_label_filenames()
if self.use_cache and exists(self.label_files["figure json"]) and exists(self.label_files["statistics"]):
self.fig_labels = ds_utils.read_plotly(self.label_files["figure json"])
self.label_results = ds_utils.read_json(self.label_files["statistics"])
elif not load_only:
label_obj.run_DMT_processing()
self.fig_labels = label_obj.fig_labels
self.label_results = label_obj.label_results
# Get vocab with word counts
def load_or_prepare_vocab(self, load_only=False):
"""
Calculates the vocabulary count from the tokenized text.
The resulting dataframes may be used in nPMI calculations, zipf, etc.
:param
:return:
"""
if self.use_cache and exists(self.vocab_counts_df_fid):
logs.info("Reading vocab from cache")
self.load_vocab()
self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df)
elif not load_only:
if self.tokenized_df is None:
# Building the vocabulary starts with tokenizing.
self.load_or_prepare_tokenized_df(load_only=False)
logs.info("Calculating vocab afresh")
word_count_df = count_vocab_frequencies(self.tokenized_df)
logs.info("Making dfs with proportion.")
self.vocab_counts_df = calc_p_word(word_count_df)
self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df)
if self.save:
logs.info("Writing out.")
ds_utils.write_df(self.vocab_counts_df, self.vocab_counts_df_fid)
logs.info("unfiltered vocab")
logs.info(self.vocab_counts_df)
logs.info("filtered vocab")
logs.info(self.vocab_counts_filtered_df)
def load_vocab(self):
self.vocab_counts_df = ds_utils.read_df(self.vocab_counts_df_fid)
def load_or_prepare_text_duplicates(self, load_only=False, save=True, list_duplicates=True):
"""Uses a text duplicates library, which
returns strings with their counts, fraction of data that is duplicated,
or else uses what's available in the cache.
"""
dups_obj = td.DMTHelper(self, load_only=load_only, save=save)
dups_obj.run_DMT_processing(list_duplicates=list_duplicates)
self.duplicates_results = dups_obj.duplicates_results
self.dups_frac = self.duplicates_results[td.DUPS_FRAC]
if list_duplicates and td.DUPS_DICT in self.duplicates_results:
self.dups_dict = self.duplicates_results[td.DUPS_DICT]
self.duplicates_files = dups_obj.get_duplicates_filenames()
def load_or_prepare_text_perplexities(self, load_only=False):
perplex_obj = perplexity.DMTHelper(self, load_only=load_only)
perplex_obj.run_DMT_processing()
self.perplexities_df = perplex_obj.df
def load_general_stats(self):
self.general_stats_dict = json.load(
open(self.general_stats_json_fid, encoding="utf-8")
)
self.sorted_top_vocab_df = ds_utils.read_df(self.sorted_top_vocab_df_fid)
self.text_nan_count = self.general_stats_dict[TEXT_NAN_CNT]
self.dups_frac = self.general_stats_dict[td.DUPS_FRAC]
self.total_words = self.general_stats_dict[TOT_WORDS]
self.total_open_words = self.general_stats_dict[TOT_OPEN_WORDS]
def prepare_general_stats(self):
if self.tokenized_df is None:
logs.warning("Tokenized dataset not yet loaded; doing so.")
self.load_or_prepare_tokenized_df()
if self.vocab_counts_df is None:
logs.warning("Vocab not yet loaded; doing so.")
self.load_or_prepare_vocab()
self.sorted_top_vocab_df = self.vocab_counts_filtered_df.sort_values(
"count", ascending=False
).head(_TOP_N)
self.total_words = len(self.vocab_counts_df)
self.total_open_words = len(self.vocab_counts_filtered_df)
self.text_nan_count = int(self.tokenized_df.isnull().sum().sum())
self.load_or_prepare_text_duplicates()
self.general_stats_dict = {
TOT_WORDS: self.total_words,
TOT_OPEN_WORDS: self.total_open_words,
TEXT_NAN_CNT: self.text_nan_count,
td.DUPS_FRAC: self.dups_frac
}
def load_or_prepare_dataset(self, load_only=False):
"""
Prepares the HF dataset text/feature based on given config, split, etc.
Args:
load_only: Whether only a cached dataset can be used.
"""
logs.info("Doing text dset.")
if self.use_cache and exists(self.text_dset_fid):
# load extracted text
self.text_dset = load_from_disk(self.text_dset_fid)
logs.warning("Loaded dataset from disk")
logs.warning(self.text_dset)
# ...Or load it from the server and store it anew
elif not load_only:
self.prepare_text_dset()
if self.save:
# save extracted text instances
logs.warning("Saving dataset to disk")
self.text_dset.save_to_disk(self.text_dset_fid)
# TODO: Are we not using this anymore?
def load_or_prepare_dset_peek(self, load_only=False):
if self.use_cache and exists(self.dset_peek_json_fid):
with open(self.dset_peek_json_fid, "r") as f:
self.dset_peek = json.load(f)["dset peek"]
elif not load_only:
self.dset_peek = self.dset[:100]
if self.save:
ds_utils.write_json({"dset peek": self.dset_peek},
self.dset_peek_json_fid)
def load_or_prepare_tokenized_df(self, load_only=False):
if self.use_cache and exists(self.tokenized_df_fid):
self.tokenized_df = ds_utils.read_df(self.tokenized_df_fid)
elif not load_only:
# tokenize all text instances
self.tokenized_df = Tokenize(self.text_dset, feature=TEXT_FIELD,
tok_feature=TOKENIZED_FIELD).get_df()
logs.info("tokenized df is")
logs.info(self.tokenized_df)
if self.save:
logs.warning("Saving tokenized dataset to disk")
# save tokenized text
ds_utils.write_df(self.tokenized_df, self.tokenized_df_fid)
def load_or_prepare_npmi(self, load_only=False):
npmi_obj = npmi.DMTHelper(self, IDENTITY_TERMS, load_only=load_only, use_cache=self.use_cache, save=self.save)
npmi_obj.run_DMT_processing()
self.npmi_obj = npmi_obj
self.npmi_results = npmi_obj.results_dict
self.npmi_files = npmi_obj.get_filenames()
def load_or_prepare_zipf(self, load_only=False):
zipf_json_fid, zipf_fig_json_fid, zipf_fig_html_fid = zipf.get_zipf_fids(
self.dataset_cache_dir)
if self.use_cache and exists(zipf_json_fid):
# Zipf statistics
# Read Zipf statistics: Alpha, p-value, etc.
with open(zipf_json_fid, "r") as f:
zipf_dict = json.load(f)
self.z = zipf.Zipf(self.vocab_counts_df)
self.z.load(zipf_dict)
# Zipf figure
if exists(zipf_fig_json_fid):
self.zipf_fig = ds_utils.read_plotly(zipf_fig_json_fid)
elif not load_only:
self.zipf_fig = zipf.make_zipf_fig(self.z)
if self.save:
ds_utils.write_plotly(self.zipf_fig)
elif not load_only:
self.prepare_zipf()
if self.save:
zipf_dict = self.z.get_zipf_dict()
ds_utils.write_json(zipf_dict, zipf_json_fid)
ds_utils.write_plotly(self.zipf_fig, zipf_fig_json_fid)
self.zipf_fig.write_html(zipf_fig_html_fid)
def prepare_zipf(self):
# Calculate zipf from scratch
# TODO: Does z even need to be self?
self.z = zipf.Zipf(self.vocab_counts_df)
self.z.calc_fit()
self.zipf_fig = zipf.make_zipf_fig(self.z)
def dummy(doc):
return doc
def count_vocab_frequencies(tokenized_df):
"""
Based on an input pandas DataFrame with a 'text' column,
this function will count the occurrences of all words.
:return: [num_words x num_sentences] DataFrame with the rows corresponding to the
different vocabulary words and the column to the presence (0 or 1) of that word.
"""
cvec = CountVectorizer(
tokenizer=dummy,
preprocessor=dummy,
)
# We do this to calculate per-word statistics
# Fast calculation of single word counts
logs.info(
"Fitting dummy tokenization to make matrix using the previous tokenization"
)
cvec.fit(tokenized_df[TOKENIZED_FIELD])
document_matrix = cvec.transform(tokenized_df[TOKENIZED_FIELD])
batches = np.linspace(0, tokenized_df.shape[0], _NUM_VOCAB_BATCHES).astype(
int)
i = 0
tf = []
while i < len(batches) - 1:
if i % 100 == 0:
logs.info("%s of %s vocab batches" % (str(i), str(len(batches))))
batch_result = np.sum(
document_matrix[batches[i]: batches[i + 1]].toarray(), axis=0
)
tf.append(batch_result)
i += 1
word_count_df = pd.DataFrame(
[np.sum(tf, axis=0)], columns=cvec.get_feature_names_out()
).transpose()
# Now organize everything into the dataframes
word_count_df.columns = [CNT]
word_count_df.index.name = WORD
return word_count_df
def calc_p_word(word_count_df):
# p(word)
word_count_df[PROP] = word_count_df[CNT] / float(sum(word_count_df[CNT]))
vocab_counts_df = pd.DataFrame(
word_count_df.sort_values(by=CNT, ascending=False))
vocab_counts_df[VOCAB] = vocab_counts_df.index
return vocab_counts_df
def filter_vocab(vocab_counts_df):
# TODO: Add warnings (which words are missing) to log file?
filtered_vocab_counts_df = vocab_counts_df.drop(_CLOSED_CLASS,
errors="ignore")
filtered_count = filtered_vocab_counts_df[CNT]
filtered_count_denom = float(sum(filtered_vocab_counts_df[CNT]))
filtered_vocab_counts_df[PROP] = filtered_count / filtered_count_denom
return filtered_vocab_counts_df |