File size: 9,192 Bytes
140a766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import copy
import gradio as gr
from transformers import AutoProcessor, Idefics2ForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces

PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b")

model = Idefics2ForConditionalGeneration.from_pretrained(
        "HuggingFaceM4/idefics2-8b",
        torch_dtype=torch.bfloat16,
        _attn_implementation="flash_attention_2",
        trust_remote_code=True).to("cuda")



def turn_is_pure_media(turn):
    return turn[1] is None
def format_user_prompt_with_im_history_and_system_conditioning(
    user_prompt, chat_history
):
    """
    Produces the resulting list that needs to go inside the processor.
    It handles the potential image(s), the history and the system conditionning.
    """
    resulting_messages = copy.deepcopy([])
    resulting_images = []

    # Format history
    for turn in chat_history:
        if not resulting_messages or (resulting_messages and resulting_messages[-1]["role"] != "user"):
            resulting_messages.append(
                {
                    "role": "user",
                    "content": [],
                }
            )

        if turn_is_pure_media(turn):
            media = turn[0][0]
            resulting_messages[-1]["content"].append({"type": "image"})
            resulting_images.append(Image.open(media))
        else:
            user_utterance, assistant_utterance = turn
            resulting_messages[-1]["content"].append(
                {"type": "text", "text": user_utterance.strip()}
            )
            resulting_messages.append(
                {
                    "role": "assistant",
                    "content": [
                        {"type": "text", "text": user_utterance.strip()}
                    ]
                }
            )

    # Format current input
    if not user_prompt["files"]:
        resulting_messages.append(
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": user_prompt['text']}
                ],
            }
        )
    else:
        # Choosing to put the image first (i.e. before the text), but this is an arbiratrary choice.
        resulting_messages.append(
            {
                "role": "user",
                "content": [{"type": "image"}] * len(user_prompt['files']) + [
                    {"type": "text", "text": user_prompt['text']}
                ]
            }
        )
        for im in user_prompt["files"]:
          print(im)
          if isinstance(im, str):
            
            resulting_images.extend([Image.open(im)])
          elif isinstance(im, dict):
            resulting_images.extend([Image.open(im['path'])])


    return resulting_messages, resulting_images


def extract_images_from_msg_list(msg_list):
    all_images = []
    for msg in msg_list:
        for c_ in msg["content"]:
            if isinstance(c_, Image.Image):
                all_images.append(c_)
    return all_images

@spaces.GPU(duration=180)
def model_inference(
    user_prompt,
    chat_history,
    decoding_strategy,
    temperature,
    max_new_tokens,
    repetition_penalty,
    top_p,
):
    if user_prompt["text"].strip() == "" and not user_prompt["files"]:
        gr.Error("Please input a query and optionally image(s).")

    if user_prompt["text"].strip() == "" and user_prompt["files"]:
        gr.Error("Please input a text query along the image(s).")


    streamer = TextIteratorStreamer(
        PROCESSOR.tokenizer,
        skip_prompt=True,
        timeout=5.,
    )

    # Common parameters to all decoding strategies
    # This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
    generation_args = {
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,
        "streamer": streamer,
    }

    assert decoding_strategy in [
        "Greedy",
        "Top P Sampling",
    ]
    if decoding_strategy == "Greedy":
        generation_args["do_sample"] = False
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p

    # Creating model inputs
    resulting_text, resulting_images = format_user_prompt_with_im_history_and_system_conditioning(
        user_prompt=user_prompt,
        chat_history=chat_history,
    )
    prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
    inputs = PROCESSOR(text=prompt, images=resulting_images if resulting_images else None, return_tensors="pt")
    inputs = {k: v.to("cuda") for k, v in inputs.items()}
    generation_args.update(inputs)


    thread = Thread(
        target=model.generate,
        kwargs=generation_args,
    )
    thread.start()

    print("Start generating")
    acc_text = ""
    for text_token in streamer:
        time.sleep(0.04)
        acc_text += text_token
        if acc_text.endswith("<end_of_utterance>"):
            acc_text = acc_text[:-18]
        yield acc_text
    print("Success - generated the following text:", acc_text)
    print("-----")
BOT_AVATAR = "IDEFICS_logo.png"

# Hyper-parameters for generation
max_new_tokens = gr.Slider(
    minimum=8,
    maximum=1024,
    value=512,
    step=1,
    interactive=True,
    label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
    minimum=0.01,
    maximum=5.0,
    value=1.2,
    step=0.01,
    interactive=True,
    label="Repetition penalty",
    info="1.0 is equivalent to no penalty",
)
decoding_strategy = gr.Radio(
    [
        "Greedy",
        "Top P Sampling",
    ],
    value="Greedy",
    label="Decoding strategy",
    interactive=True,
    info="Higher values is equivalent to sampling more low-probability tokens.",
)
temperature = gr.Slider(
    minimum=0.0,
    maximum=5.0,
    value=0.4,
    step=0.1,
    interactive=True,
    label="Sampling temperature",
    info="Higher values will produce more diverse outputs.",
)
top_p = gr.Slider(
    minimum=0.01,
    maximum=0.99,
    value=0.8,
    step=0.01,
    interactive=True,
    label="Top P",
    info="Higher values is equivalent to sampling more low-probability tokens.",
)


chatbot = gr.Chatbot(
    label="Idefics2",
    avatar_images=[None, BOT_AVATAR],
    # height=750,
)


with gr.Blocks(fill_height=True, css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img { width: auto; max-width: 30%; height: auto; max-height: 30%; }") as demo:
    decoding_strategy.change(
        fn=lambda selection: gr.Slider(
            visible=(
                selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
            )
        ),
        inputs=decoding_strategy,
        outputs=temperature,
    )
    decoding_strategy.change(
        fn=lambda selection: gr.Slider(
            visible=(
                selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
            )
        ),
        inputs=decoding_strategy,
        outputs=repetition_penalty,
    )
    decoding_strategy.change(
        fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
        inputs=decoding_strategy,
        outputs=top_p,
    )
    examples = [{"text": "How many items are sold?", "files":["./example_images/docvqa_example.png"]},
                {"text": "What is this UI about?", "files":["./example_images/s2w_example.png"]},
                {"text": "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", "files":["./example_images/travel_tips.jpg"]},
                {"text": "Can you tell me a very short story based on this image?", "files":["./example_images/chicken_on_money.png"]},
                {"text": "Where is this pastry from?", "files":["./example_images/baklava.png"]},
                {"text": "How much percent is the order status?", "files":["./example_images/dummy_pdf.png"]},
                {"text":"As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.", "files":["./example_images/art_critic.jpg"]}
               ]
    description = "Try [IDEFICS2-8B](https://huggingface.co/HuggingFaceM4/idefics2-8b), the instruction fine-tuned IDEFICS2 in this demo. 💬 IDEFICS2 is a state-of-the-art vision language model in various benchmarks. To get started, upload an image and write a text prompt or try one of the examples. You can also play with advanced generation parameters. To learn more about IDEFICS2, read [the blog](https://huggingface.co/blog/idefics2). Note that this model is not as chatty as the upcoming chatty model, and it will give shorter answers."


    gr.ChatInterface(
        fn=model_inference,
        chatbot=chatbot,
        examples=examples,
        description=description,
        title="Idefics2 Playground 🐶 ",
        multimodal=True,
        additional_inputs=[decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p],
    )

demo.launch(debug=True)