Spaces:
Runtime error
Runtime error
File size: 41,126 Bytes
ba10e05 2ee5884 6af2791 ac8d53f 217780a ac8d53f 6af2791 ac8d53f 217780a ac8d53f 6af2791 217780a 69ef035 adef583 69ef035 217780a cb3f587 8fd442d 6af2791 ac8d53f 217780a ba10e05 6af2791 ba10e05 6af2791 ba10e05 6af2791 ba10e05 6af2791 ba10e05 ac8d53f 58777cc 6af2791 58777cc 3272d75 6af2791 36a328c 217780a 6af2791 0e509eb 6af2791 217780a f40416e 217780a b027e38 6af2791 b027e38 6af2791 b027e38 6af2791 f113dfb ac8d53f 2ee5884 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 ac8d53f 6af2791 fcb202b 6af2791 217780a 6af2791 ac8d53f 6af2791 ac8d53f ba10e05 ac8d53f 6af2791 ac8d53f fcb202b ac8d53f 6af2791 ac8d53f 6af2791 217780a 6af2791 217780a 6af2791 fcb202b 217780a 0af4171 217780a 6af2791 217780a 58777cc 8eb2e22 00346ea 217780a 6af2791 59ed6fa 6af2791 1d2a295 6af2791 05ddc83 6af2791 05ddc83 6af2791 05ddc83 6af2791 05ddc83 6af2791 69ef035 6af2791 9ce5ff8 6af2791 b027e38 6af2791 217780a e26a679 6af2791 e26a679 f40416e e26a679 6af2791 cfdcbdc 6af2791 94db9d5 6af2791 8fd442d 6af2791 58777cc e784e7c 6af2791 cfdcbdc 6af2791 e784e7c 6af2791 3d753a9 6af2791 e784e7c 6af2791 58777cc c1b9f92 e9c2350 c1b9f92 217780a 6af2791 ac8d53f 217780a ac8d53f e3795af 217780a 6af2791 ac8d53f 217780a 6af2791 217780a 6af2791 ac8d53f 694509f ac8d53f 6af2791 694509f 6af2791 ac8d53f 6af2791 8fd442d 6af2791 217780a ba10e05 0e509eb eb9e054 ba10e05 0e509eb 694509f 0e509eb 694509f 0e509eb 2ee5884 0e509eb 2ee5884 0e509eb 69ef035 0e509eb dd96978 217780a dafb0ab 6af2791 dafb0ab ac8d53f cf12ee0 dafb0ab 4932b87 dafb0ab ac8d53f 217780a dafb0ab 6af2791 dafb0ab ac8d53f cf12ee0 dafb0ab ac8d53f dafb0ab 217780a 6af2791 8eb2e22 fcb202b 6af2791 fcb202b f113dfb 6af2791 fcb202b ba10e05 6af2791 3d07ea9 6af2791 ba10e05 8eb2e22 6af2791 8eb2e22 3d07ea9 6af2791 8eb2e22 6af2791 ba10e05 960a335 dd96978 69ef035 6af2791 2ee5884 6af2791 ba10e05 dd96978 a30d891 6af2791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 |
import copy
import glob
import hashlib
import logging
import os
import re
from pathlib import Path
from typing import List, Optional, Tuple
from urllib.parse import urlparse
import gradio as gr
import PIL
from gradio import processing_utils
from gradio_client.client import DEFAULT_TEMP_DIR
from text_generation import Client
from transformers import AutoProcessor
MODELS = [
# "HuggingFaceM4/idefics-9b-instruct",
"HuggingFaceM4/idefics-80b-instruct",
]
API_PATHS = {
"HuggingFaceM4/idefics-9b-instruct": (
"https://api-inference.huggingface.co/models/HuggingFaceM4/idefics-9b-instruct"
),
"HuggingFaceM4/idefics-80b-instruct": (
"https://api-inference.huggingface.co/models/HuggingFaceM4/idefics-80b-instruct"
),
}
SYSTEM_PROMPT = [
"""The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about the content of visual inputs. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.
The conversation begins:""",
"""\nUser:""",
"https://i1.pickpik.com/photos/515/906/355/kittens-cats-pet-cute-preview.jpg",
"Describe this image.<end_of_utterance>",
"""\nAssistant: Five kittens are standing together in the center of the photograph. From the left to right, there is one orange kitten, two kittens white and black stripes, and two brown kittens with an orange head. They are in bright green grass and it looks like they are moving forward.<end_of_utterance>""",
"\nUser:How about this image?",
"https://cdn.pixabay.com/photo/2017/09/25/13/12/puppy-2785074_1280.jpg",
"Can you describe it too?<end_of_utterance>",
"""\nAssistant: A dog is lying on the floor, looking at the camera. It is looking directly at you. The dog has a white body and brown patches on its face and ears. Its eyes are dark. Its nose is black, and it has long, floppy ears, white paws, long fur, big eyes.<end_of_utterance>""",
"\nUser: What kind of breed is it?<end_of_utterance>",
"""\nAssistant: It looks like a Cavalier King Charles Spaniel. These breeds are known for their gentle, affectionate nature. Their long ears and big, brown eyes give them a sweet, expressive face. Cavaliers are small dogs weighing between 13 and 20 pounds. They have a silky, medium-length coat that comes in various colors, including black and tan, tricolor, red and white, or black.<end_of_utterance>""",
"\nUser: What can you tell me about this breed of dogs?<end_of_utterance>",
"""\nAssistant: One specific characteristic of the Cavalier King Charles Spaniel is its friendly and affectionate nature. This breed is known for being extremely sociable and forming strong bonds with their owners. They are often described as "velcro dogs" because they love to be close to their human companions, whether it's sitting on their laps, cuddling on the couch, or simply following them around the house.<end_of_utterance>""",
"\nUser: ghjkhjabnufs<end_of_utterance>",
"""\nAssistant: That doesn’t seem to be a word. Could you ask me another way?<end_of_utterance>""",
"\nUser: Do you like Cavalier King Charles Spaniel?<end_of_utterance>",
"""\nAssistant: I do not have personal opinions as I’m just a computer program. However, cavaliers are known for being excellent family pets due to their gentle and patient demeanor, making them great with children and other pets. Their affectionate nature also makes them ideal therapy dogs, as they can provide comfort and emotional support to those in need.<end_of_utterance>""",
"\nUser: How many dogs do you see in this image?",
"https://i.dailymail.co.uk/i/pix/2011/07/01/article-2010308-0CD22A8300000578-496_634x414.jpg",
"<end_of_utterance>",
"""\nAssistant: There is no dogs in this image. The picture shows a tennis player jumping to volley the ball.<end_of_utterance>""",
]
BAN_TOKENS = ( # For documentation puporse. We are not using this list, it is hardcoded inside `idefics_causal_lm.py` inside TGI.
"<image>;<fake_token_around_image>"
)
EOS_STRINGS = ["<end_of_utterance>", "\nUser:"]
STOP_SUSPECT_LIST = []
GRADIO_LINK = "https://huggingfacem4-idefics-playground.hf.space"
API_TOKEN = os.getenv("HF_AUTH_TOKEN")
IDEFICS_LOGO = "https://huggingface.co/spaces/HuggingFaceM4/idefics_playground/resolve/main/IDEFICS_logo.png"
PROCESSOR = AutoProcessor.from_pretrained(
"HuggingFaceM4/idefics-9b-instruct",
token=API_TOKEN,
)
BOT_AVATAR = "IDEFICS_logo.png"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
# Monkey patch adapted from gradio.components.image.Image - mostly to make the `save` step optional in `pil_to_temp_file`
def hash_bytes(bytes: bytes):
sha1 = hashlib.sha1()
sha1.update(bytes)
return sha1.hexdigest()
def pil_to_temp_file(img: PIL.Image.Image, dir: str = DEFAULT_TEMP_DIR, format: str = "png") -> str:
"""Save a PIL image into a temp file"""
bytes_data = processing_utils.encode_pil_to_bytes(img, format)
temp_dir = Path(dir) / hash_bytes(bytes_data)
temp_dir.mkdir(exist_ok=True, parents=True)
filename = str(temp_dir / f"image.{format}")
if not os.path.exists(filename):
img.save(filename, pnginfo=processing_utils.get_pil_metadata(img))
return filename
def add_file(file):
return file.name, gr.update(label='🖼️ Uploaded!')
# This is a hack to make pre-computing the default examples work.
# During normal inference, we pass images as url to a local file using the method `gradio_link`
# which allows the tgi server to fetch the local image from the frontend server.
# however, we are building the space (and pre-computing is part of building the space), the frontend is not available
# and won't answer. So tgi server will try to fetch an image that is not available yet, which will result in a timeout error
# because tgi will never be able to return the generation.
# To bypass that, we pass instead the images URLs from the spaces repo.
all_images = glob.glob(f"{os.path.dirname(__file__)}/example_images/*")
DEFAULT_IMAGES_TMP_PATH_TO_URL = {}
for im_path in all_images:
H = gr.Image(im_path, visible=False, type="filepath")
tmp_filename = H.preprocess(H.value)
DEFAULT_IMAGES_TMP_PATH_TO_URL[tmp_filename] = f"https://huggingface.co/spaces/HuggingFaceM4/idefics_playground/resolve/main/example_images/{os.path.basename(im_path)}"
# Utils to handle the image markdown display logic
def split_str_on_im_markdown(string: str) -> List[str]:
"""
Extract from a string (typically the user prompt string) the potential images from markdown
Examples:
- `User:![](https://favurl.com/chicken_on_money.png)Describe this image.` would become `["User:", "https://favurl.com/chicken_on_money.png", "Describe this image."]`
- `User:![](/file=/my_temp/chicken_on_money.png)Describe this image.` would become `["User:", "/my_temp/chicken_on_money.png", "Describe this image."]`
"""
IMAGES_PATTERN = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)")
parts = []
cursor = 0
for pattern in IMAGES_PATTERN.finditer(string):
start = pattern.start()
if start != cursor:
parts.append(string[cursor:start])
image_url = pattern.group(1)
if image_url.startswith("/file="):
image_url = image_url[6:] # Remove the 'file=' prefix
parts.append(image_url)
cursor = pattern.end()
if cursor != len(string):
parts.append(string[cursor:])
return parts
def is_image(string: str) -> bool:
"""
There are two ways for images: local image path or url.
"""
return is_url(string) or string.startswith(DEFAULT_TEMP_DIR)
def is_url(string: str) -> bool:
"""
Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
invalidated the url
"""
if " " in string:
return False
result = urlparse(string)
return all([result.scheme, result.netloc])
def isolate_images_urls(prompt_list: List) -> List:
"""
Convert a full string prompt to the list format expected by the processor.
In particular, image urls (as delimited by <fake_token_around_image>) should be their own elements.
From:
```
[
"bonjour<fake_token_around_image><image:IMG_URL><fake_token_around_image>hello",
PIL.Image.Image,
"Aurevoir",
]
```
to:
```
[
"bonjour",
IMG_URL,
"hello",
PIL.Image.Image,
"Aurevoir",
]
```
"""
linearized_list = []
for prompt in prompt_list:
# Prompt can be either a string, or a PIL image
if isinstance(prompt, PIL.Image.Image):
linearized_list.append(prompt)
elif isinstance(prompt, str):
if "<fake_token_around_image>" not in prompt:
linearized_list.append(prompt)
else:
prompt_splitted = prompt.split("<fake_token_around_image>")
for ps in prompt_splitted:
if ps == "":
continue
if ps.startswith("<image:"):
linearized_list.append(ps[7:-1])
else:
linearized_list.append(ps)
else:
raise TypeError(
f"Unrecognized type for `prompt`. Got {type(type(prompt))}. Was expecting something in [`str`,"
" `PIL.Image.Image`]"
)
return linearized_list
def fetch_images(url_list: str) -> PIL.Image.Image:
"""Fetching images"""
return PROCESSOR.image_processor.fetch_images(url_list)
def handle_manual_images_in_user_prompt(user_prompt: str) -> List[str]:
"""
Handle the case of textually manually inputted images (i.e. the `<fake_token_around_image><image:IMG_URL><fake_token_around_image>`) in the user prompt
by fetching them, saving them locally and replacing the whole sub-sequence the image local path.
"""
if "<fake_token_around_image>" in user_prompt:
splitted_user_prompt = isolate_images_urls([user_prompt])
resulting_user_prompt = []
for u_p in splitted_user_prompt:
if is_url(u_p):
img = fetch_images([u_p])[0]
tmp_file = pil_to_temp_file(img)
resulting_user_prompt.append(tmp_file)
else:
resulting_user_prompt.append(u_p)
return resulting_user_prompt
else:
return [user_prompt]
def gradio_link(img_path: str) -> str:
url = f"{GRADIO_LINK}/file={img_path}"
return url
def prompt_list_to_markdown(prompt_list: List[str]) -> str:
"""
Convert a user prompt in the list format (i.e. elements are either a PIL image or a string) into
the markdown format that is used for the chatbot history and rendering.
"""
resulting_string = ""
for elem in prompt_list:
if is_image(elem):
if is_url(elem):
resulting_string += f"![]({elem})"
else:
resulting_string += f"![](/file={elem})"
else:
resulting_string += elem
return resulting_string
def prompt_list_to_tgi_input(prompt_list: List[str]) -> str:
"""
TGI expects a string that contains both text and images in the image markdown format (i.e. the `![]()` ).
The images links are parsed on TGI side
"""
result_string_input = ""
for elem in prompt_list:
if is_image(elem):
if is_url(elem):
result_string_input += f"![]({elem})"
else:
result_string_input += f"![]({gradio_link(img_path=elem)})"
else:
result_string_input += elem
return result_string_input
def remove_spaces_around_token(text: str) -> str:
pattern = r"\s*(<fake_token_around_image>)\s*"
replacement = r"\1"
result = re.sub(pattern, replacement, text)
return result
# Chatbot utils
def format_user_prompt_with_im_history_and_system_conditioning(
current_user_prompt_str: str, current_image: Optional[str], history: List[Tuple[str, str]]
) -> Tuple[List[str], List[str]]:
"""
Produces the resulting list that needs to go inside the processor.
It handles the potential image box input, the history and the system conditionning.
"""
resulting_list = copy.deepcopy(SYSTEM_PROMPT)
# Format history
for turn in history:
user_utterance, assistant_utterance = turn
splitted_user_utterance = split_str_on_im_markdown(user_utterance)
optional_space = ""
if not is_image(splitted_user_utterance[0]):
optional_space = " "
resulting_list.append(f"\nUser:{optional_space}")
resulting_list.extend(splitted_user_utterance)
resulting_list.append(f"<end_of_utterance>\nAssistant: {assistant_utterance}")
# Format current input
current_user_prompt_str = remove_spaces_around_token(current_user_prompt_str)
if current_image is None:
if "![](" in current_user_prompt_str:
current_user_prompt_list = split_str_on_im_markdown(current_user_prompt_str)
else:
current_user_prompt_list = handle_manual_images_in_user_prompt(current_user_prompt_str)
optional_space = ""
if not is_image(current_user_prompt_list[0]):
# Check if the first element is an image (and more precisely a path to an image)
optional_space = " "
resulting_list.append(f"\nUser:{optional_space}")
resulting_list.extend(current_user_prompt_list)
resulting_list.append("<end_of_utterance>\nAssistant:")
else:
# Choosing to put the image first when the image is inputted through the UI, but this is an arbiratrary choice.
resulting_list.extend(["\nUser:", current_image, f"{current_user_prompt_str}<end_of_utterance>\nAssistant:"])
current_user_prompt_list = [current_user_prompt_str]
return resulting_list, current_user_prompt_list
# dope_callback = gr.CSVLogger()
# problematic_callback = gr.CSVLogger()
textbox = gr.Textbox(
placeholder="Upload an image and send a message",
show_label=False,
# value="Describe the battle against the fierce dragons.",
visible=True,
container=False,
label="Text input",
scale=6,
)
with gr.Blocks(title="IDEFICS Playground", theme=gr.themes.Base()) as demo:
gr.HTML("""<h1 align="center">🐶 IDEFICS Playground</h1>""")
with gr.Row(variant="panel"):
with gr.Column(scale=1):
gr.Image(IDEFICS_LOGO, elem_id="banner-image", show_label=False, show_download_button=False)
with gr.Column(scale=5):
gr.HTML("""
This demo showcases <b>IDEFICS</b>, a open-access large visual language model. Like GPT-4, the multimodal model accepts arbitrary sequences of image and text inputs and produces text outputs. IDEFICS can answer questions about images, describe visual content, create stories grounded in multiple images, etc.<br><br>
IDEFICS (which stands for <b>I</b>mage-aware <b>D</b>ecoder <b>E</b>nhanced à la <b>F</b>lamingo with <b>I</b>nterleaved <b>C</b>ross-attention<b>S</b>) is an open-access reproduction of <a href="https://huggingface.co/papers/2204.14198" target="_blank">Flamingo</a>, a closed-source visual language model developed by Deepmind. IDEFICS was built solely on publicly available data and models. It is currently the only visual language model of this scale (80 billion parameters) that is available in open-access.<br>
📚 The variants available in this demo were fine-tuned on a mixture of supervised and instruction fine-tuning datasets to make the models more suitable in conversational settings. For more details, we refer to our <a href="https://huggingface.co/blog/idefics" target="_blank">blog post</a>.<br>
🅿️ <b>Intended uses:</b> This demo along with the <a href="https://huggingface.co/models?sort=trending&search=HuggingFaceM4%2Fidefics" target="_blank">supporting models</a> are provided as research artifacts to the community. We detail misuses and out-of-scope uses <a href="https://huggingface.co/HuggingFaceM4/idefics-80b#misuse-and-out-of-scope-use" target="_blank">here</a>.<br>
⛔️ <b>Limitations:</b> The model can produce factually incorrect texts, hallucinate facts (with or without an image) and will struggle with small details in images. While the model will tend to refuse answering questionable user requests, it can produce problematic outputs (including racist, stereotypical, and disrespectful texts), in particular when prompted to do so. We encourage users to read our findings from evaluating the model for potential biases in the <a href="https://huggingface.co/HuggingFaceM4/idefics-80b#bias-evaluation" target="_blank">model card</a>.<br>
""")
# with gr.Row():
# with gr.Column(scale=2):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=MODELS,
value="HuggingFaceM4/idefics-80b-instruct",
interactive=True,
show_label=False,
container=False,
label="Model",
visible=False,
)
imagebox = gr.Image(type="filepath", label="Image input", visible=False)
with gr.Row():
# def prefetch_images_in_history(user_prompt_str):
# """
# Pre-fetch the images that are passed in the chatbot default history.
# """
# return prompt_list_to_markdown(handle_manual_images_in_user_prompt(user_prompt_str))
chatbot = gr.Chatbot(
elem_id="chatbot",
label="IDEFICS",
visible=True,
height=750,
avatar_images=[None, BOT_AVATAR]
# value=[
# [
# (
# prefetch_images_in_history(
# """Write a funny story including the following characters.
# There should be drama and most importantly romance.
# Character 1:<fake_token_around_image><image:https://m.media-amazon.com/images/M/MV5BODg1OTczMWEtNTU3MS00OTUzLThjODEtNDg1MWQwZmExYmFlXkEyXkFqcGdeQWFybm8@._V1_QL75_UX500_CR0,0,500,281_.jpg><fake_token_around_image>
# Character 2:<fake_token_around_image><image:https://static.wikia.nocookie.net/dreamworks/images/0/09/Shrek_dreamworks.png/revision/latest?cb=20170921225439><fake_token_around_image>
# Character 3:<fake_token_around_image><image:https://upload.wikimedia.org/wikipedia/en/e/ef/Marsupilami_1.jpg><fake_token_around_image>
# The plot should take place in the world pictured here:<fake_token_around_image><image:https://www.astronomy.com/wp-content/uploads/sites/2/2021/09/ON1.jpg><fake_token_around_image>"""
# )
# ),
# """Once upon a time, in a world where the sky was a dome and the ground was covered in grass, there lived a beautiful princess named Mulan. She was kind, brave, and always ready to help others. One day, while walking through the forest, she stumbled upon a strange creature. It was a green ogre named Shrek, who was lost and looking for his way back home.
# Mulan, being the kind-hearted person she was, decided to help Shrek find his way back. As they traveled together, they began to develop a strong bond. Shrek was impressed by Mulan's bravery and determination, while Mulan admired Shrek's loyalty and sense of humor.
# However, their journey was not without obstacles. They encountered a mischievous cat named Hoboua, who was always causing trouble and getting into fights. Despite his troublemaking ways, Hoboua had a good heart and eventually became a valuable ally to Mulan and Shrek.
# As they traveled, they faced many challenges, including battling fierce dragons and navigating treacherous mountains. Through it all, Mulan and Shrek grew closer, and their feelings for each other deepened.
# Finally, they reached Shrek's home, and he was reunited with his family and friends. Mulan, however, was sad to leave him behind. But Shrek had a surprise for her. He had fallen in love with her and wanted to be with her forever.
# Mulan was overjoyed, and they shared a passionate kiss. From that day on, they lived happily ever after, exploring the world together and facing any challenges that came their way.
# And so, the story of Mulan and Shrek's romance came to an end, leaving a lasting impression on all who heard it.""",
# ],
# ],
)
with gr.Group():
with gr.Row():
textbox.render()
submit_btn = gr.Button(value="▶️ Submit", visible=True)
clear_btn = gr.ClearButton([textbox, imagebox, chatbot], value="🧹 Clear")
regenerate_btn = gr.Button(value="🔄 Regenerate", visible=True)
upload_btn = gr.UploadButton("📁 Upload image", file_types=["image"])
# with gr.Group():
# with gr.Row():
# with gr.Column(scale=1, min_width=50):
# dope_bttn = gr.Button("Dope🔥")
# with gr.Column(scale=1, min_width=50):
# problematic_bttn = gr.Button("Problematic😬")
with gr.Row():
with gr.Accordion("Advanced settings", open=False, visible=True) as parameter_row:
max_new_tokens = gr.Slider(
minimum=8,
maximum=1024,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.0,
maximum=5.0,
value=1.0,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
)
decoding_strategy = gr.Radio(
[
"Greedy",
"Top P Sampling",
],
value="Greedy",
label="Decoding strategy",
interactive=True,
info="Higher values is equivalent to sampling more low-probability tokens.",
)
temperature = gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.4,
step=0.1,
interactive=True,
visible=False,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(
visible=(
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
top_p = gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
interactive=True,
visible=False,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["Top P Sampling"])),
inputs=decoding_strategy,
outputs=top_p,
)
gr.Markdown(
"""<p><strong>💡 Pro tip</strong>:<br>
You can input an arbitrary number of images at arbitrary positions in the same query.<br>
You will need to input each image with its URL with the syntax <code><fake_token_around_image><image:IMAGE_URL><fake_token_around_image></code>.<br>
For example, for two images, you could input <code>TEXT_1<fake_token_around_image><image:IMAGE_URL_1><fake_token_around_image>TEXT_2<fake_token_around_image><image:IMAGE_URL_2><fake_token_around_image>TEXT_3</code>.<br>
In the particular case where two images are consecutive, it is not necessary to add an additional separator: <code><fake_token_around_image><image:IMAGE_URL_1><fake_token_around_image><image:IMAGE_URL_2><fake_token_around_image></code>.</p>"""
)
def model_inference(
model_selector,
user_prompt_str,
chat_history,
image,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
):
if user_prompt_str.strip() == "" and image is None:
return "", None, chat_history
formated_prompt_list, user_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
current_user_prompt_str=user_prompt_str.strip(),
current_image=image,
history=chat_history,
)
client_endpoint = API_PATHS[model_selector]
client = Client(
base_url=client_endpoint,
headers={"x-use-cache": "0", "Authorization": f"Bearer {API_TOKEN}"},
)
# Common parameters to all decoding strategies
# This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"stop_sequences": EOS_STRINGS,
}
assert decoding_strategy in [
"Greedy",
"Top P Sampling",
]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
if image is None:
# Case where there is no image OR the image is passed as `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`
chat_history.append([prompt_list_to_markdown(user_prompt_list), ''])
else:
# Case where the image is passed through the Image Box.
# Convert the image into base64 for both passing it through the chat history and
# displaying the image inside the same bubble as the text.
chat_history.append(
[
f"{prompt_list_to_markdown([image] + user_prompt_list)}",
'',
]
)
query = prompt_list_to_tgi_input(formated_prompt_list)
stream = client.generate_stream(prompt=query, **generation_args)
acc_text = ""
for idx, response in enumerate(stream):
text_token = response.token.text
if response.details:
# That's the exit condition
return
if text_token in STOP_SUSPECT_LIST:
acc_text += text_token
continue
if idx == 0 and text_token.startswith(" "):
text_token = text_token.lstrip()
acc_text += text_token
last_turn = chat_history.pop(-1)
last_turn[-1] += acc_text
if last_turn[-1].endswith("\nUser"):
# Safeguard: sometimes (rarely), the model won't generate the token `<end_of_utterance>` and will go directly to generating `\nUser:`
# It will thus stop the generation on `\nUser:`. But when it exits, it will have already generated `\nUser`
# This post-processing ensures that we don't have an additional `\nUser` wandering around.
last_turn[-1] = last_turn[-1][:-5]
chat_history.append(last_turn)
yield "", None, chat_history
acc_text = ""
def process_example(message, image):
"""
Same as `model_inference` but in greedy mode and with the 80b-instruct.
Specifically for pre-computing the default examples.
"""
model_selector="HuggingFaceM4/idefics-80b-instruct"
user_prompt_str=message
chat_history=[]
max_new_tokens=512
formated_prompt_list, user_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
current_user_prompt_str=user_prompt_str.strip(),
current_image=image,
history=chat_history,
)
client_endpoint = API_PATHS[model_selector]
client = Client(
base_url=client_endpoint,
headers={"x-use-cache": "0", "Authorization": f"Bearer {API_TOKEN}"},
timeout=240, # Generous time out just in case because we are in greedy. All examples should be computed in less than 30secs with the 80b-instruct.
)
# Common parameters to all decoding strategies
# This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": None,
"stop_sequences": EOS_STRINGS,
"do_sample": False,
}
if image is None:
# Case where there is no image OR the image is passed as `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`
chat_history.append([prompt_list_to_markdown(user_prompt_list), ''])
else:
# Case where the image is passed through the Image Box.
# Convert the image into base64 for both passing it through the chat history and
# displaying the image inside the same bubble as the text.
chat_history.append(
[
f"{prompt_list_to_markdown([image] + user_prompt_list)}",
'',
]
)
# Hack - see explanation in `DEFAULT_IMAGES_TMP_PATH_TO_URL`
for idx, i in enumerate(formated_prompt_list):
if i.startswith(DEFAULT_TEMP_DIR):
for k, v in DEFAULT_IMAGES_TMP_PATH_TO_URL.items():
if k == i:
formated_prompt_list[idx] = v
break
query = prompt_list_to_tgi_input(formated_prompt_list)
generated_text = client.generate(prompt=query, **generation_args).generated_text
if generated_text.endswith("\nUser"):
generated_text = generated_text[:-5]
last_turn = chat_history.pop(-1)
last_turn[-1] += generated_text
chat_history.append(last_turn)
return "", None, chat_history
textbox.submit(
fn=model_inference,
inputs=[
model_selector,
textbox,
chatbot,
imagebox,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
],
outputs=[textbox, imagebox, chatbot],
)
submit_btn.click(
fn=model_inference,
inputs=[
model_selector,
textbox,
chatbot,
imagebox,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
],
outputs=[
textbox,
imagebox,
chatbot,
],
)
def remove_last_turn(chat_history):
if len(chat_history) == 0:
return gr.Update(), gr.Update()
last_interaction = chat_history[-1]
chat_history = chat_history[:-1]
chat_update = gr.update(value=chat_history)
text_update = gr.update(value=last_interaction[0])
return chat_update, text_update
regenerate_btn.click(fn=remove_last_turn, inputs=chatbot, outputs=[chatbot, textbox]).then(
fn=model_inference,
inputs=[
model_selector,
textbox,
chatbot,
imagebox,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
],
outputs=[
textbox,
imagebox,
chatbot,
],
)
upload_btn.upload(add_file, [upload_btn], [imagebox, upload_btn], queue=False)
submit_btn.click(lambda : gr.update(label='📁 Upload image', interactive=True), [], upload_btn)
textbox.submit(lambda : gr.update(label='📁 Upload image', interactive=True), [], upload_btn)
clear_btn.click(lambda : gr.update(label='📁 Upload image', interactive=True), [], upload_btn)
# Using Flagging for saving dope and problematic examples
# Dope examples flagging
# dope_callback.setup(
# [
# model_selector,
# textbox,
# chatbot,
# imagebox,
# decoding_strategy,
# temperature,
# max_new_tokens,
# repetition_penalty,
# top_p,
# ],
# "gradio_dope_data_points",
# )
# dope_bttn.click(
# lambda *args: dope_callback.flag(args),
# [
# model_selector,
# textbox,
# chatbot,
# imagebox,
# decoding_strategy,
# temperature,
# max_new_tokens,
# repetition_penalty,
# top_p,
# ],
# None,
# preprocess=False,
# )
# # Problematic examples flagging
# problematic_callback.setup(
# [
# model_selector,
# textbox,
# chatbot,
# imagebox,
# decoding_strategy,
# temperature,
# max_new_tokens,
# repetition_penalty,
# top_p,
# ],
# "gradio_problematic_data_points",
# )
# problematic_bttn.click(
# lambda *args: problematic_callback.flag(args),
# [
# model_selector,
# textbox,
# chatbot,
# imagebox,
# decoding_strategy,
# temperature,
# max_new_tokens,
# repetition_penalty,
# top_p,
# ],
# None,
# preprocess=False,
# )
# gr.Markdown("""## How to use?
# There are two ways to provide image inputs:
# - Using the image box on the left panel
# - Using the inline syntax: `text<fake_token_around_image><image:URL_IMAGE><fake_token_around_image>text`
# The second syntax allows inputting an arbitrary number of images.""")
examples_path = os.path.dirname(__file__)
gr.Examples(
examples=[
[
(
"Which famous person does the person in the image look like? Could you craft an engaging narrative"
" featuring this character from the image as the main protagonist?"
),
f"{examples_path}/example_images/obama-harry-potter.jpg",
],
[
"Can you describe the image? Do you think it's real?",
f"{examples_path}/example_images/rabbit_force.png",
],
["Explain this meme to me.", f"{examples_path}/example_images/meme_french.jpg"],
["Give me a short and easy recipe for this dish.", f"{examples_path}/example_images/recipe_burger.webp"],
[
"I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.",
f"{examples_path}/example_images/travel_tips.jpg",
],
[
"Can you name the characters in the image and give their French names?",
f"{examples_path}/example_images/gaulois.png",
],
# ["Describe this image in detail.", f"{examples_path}/example_images/plant_bulb.webp"],
["Write a complete sales ad for this product.", f"{examples_path}/example_images/product_ad.jpg"],
[
(
"As an art critic AI assistant, could you describe this painting in details and make a thorough"
" critic?"
),
f"{examples_path}/example_images/art_critic.png",
],
[
"Can you tell me a very short story based on this image?",
f"{examples_path}/example_images/chicken_on_money.png",
],
["Write 3 funny meme texts about this image.", f"{examples_path}/example_images/elon_smoking.jpg"],
[
"Who is in this picture? Why do people find it surprising?",
f"{examples_path}/example_images/pope_doudoune.webp",
],
# ["<fake_token_around_image><image:https://assets.stickpng.com/images/6308b83261b3e2a522f01467.png><fake_token_around_image>Make a poem about the company in the image<fake_token_around_image><image:https://miro.medium.com/v2/resize:fit:1400/0*jvDu2oQreHn63-fJ><fake_token_around_image>organizing the Woodstock of AI event,<fake_token_around_image><image:https://nationaltoday.com/wp-content/uploads/2019/12/national-llama-day-1200x834.jpg><fake_token_around_image>and the fact they brought those to the event.", None],
["What are the armed baguettes guarding?", f"{examples_path}/example_images/baguettes_guarding_paris.png"],
# ["Can you describe the image?", f"{examples_path}/example_images/bear_costume.png"],
["What is this animal and why is it unusual?", f"{examples_path}/example_images/blue_dog.png"],
[
"What is this object and do you think it is horrifying?",
f"{examples_path}/example_images/can_horror.png",
],
[
(
"What is this sketch for? How would you make an argument to prove this sketch was made by Picasso"
" himself?"
),
f"{examples_path}/example_images/cat_sketch.png",
],
["Which celebrity does this claymation figure look like?", f"{examples_path}/example_images/kanye.jpg"],
# [
# "Is there a celebrity look-alike in this image? What is happening to the person?",
# f"{examples_path}/example_images/ryan-reynolds-borg.jpg",
# ],
# ["Can you describe this image in details please?", f"{examples_path}/example_images/dragons_playing.png"],
["What can you tell me about the cap in this image?", f"{examples_path}/example_images/ironman_cap.png"],
[
"Can you write an advertisement for Coca-Cola based on this image?",
f"{examples_path}/example_images/polar_bear_coke.png",
],
# [
# "What is the rabbit doing in this image? Do you think this image is real?",
# f"{examples_path}/example_images/rabbit_force.png",
# ],
# ["What is happening in this image and why is it unusual?", f"{examples_path}/example_images/ramen.png"],
# [
# "What I should look most forward to when I visit this place?",
# f"{examples_path}/example_images/tree_fortress.jpg",
# ],
# ["Who is the person in the image and what is he doing?", f"{examples_path}/example_images/tom-cruise-astronaut-pegasus.jpg"],
[
"What is happening in this image? Which famous personality does this person in center looks like?",
f"{examples_path}/example_images/gandhi_selfie.jpg",
],
[
"What do you think the dog is doing and is it unusual?",
f"{examples_path}/example_images/surfing_dog.jpg",
],
],
inputs=[textbox, imagebox],
outputs=[textbox, imagebox, chatbot],
fn=process_example,
cache_examples=True,
examples_per_page=6,
label=(
"Click on any example below to get started.\nFor convenience, the model generations have been"
" pre-computed with `idefics-80b-instruct`."
),
)
demo.queue(concurrency_count=40, max_size=40)
demo.launch()
|