Spaces:
Runtime error
Runtime error
enable chat sharing
Browse files- app_dialogue.py +113 -18
app_dialogue.py
CHANGED
@@ -9,6 +9,8 @@ from urllib.parse import urlparse
|
|
9 |
|
10 |
import gradio as gr
|
11 |
import PIL
|
|
|
|
|
12 |
from accelerate.utils import get_max_memory, set_seed
|
13 |
from PIL import Image
|
14 |
from transformers import AutoConfig, AutoProcessor, IdeficsForVisionText2Text
|
@@ -59,7 +61,88 @@ logger = logging.getLogger()
|
|
59 |
SEED = 38
|
60 |
set_seed(38)
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
64 |
# for transparent images. The call to `alpha_composite` handles this case
|
65 |
if image.mode == "RGB":
|
@@ -73,7 +156,7 @@ def convert_to_rgb(image):
|
|
73 |
|
74 |
|
75 |
# Conversion between PIL Image <-> base64 <-> Markdown utils
|
76 |
-
def
|
77 |
"""
|
78 |
Convert an PIL image into base64 string representation
|
79 |
"""
|
@@ -83,7 +166,7 @@ def pil_to_base64(pil_image):
|
|
83 |
return encoded_image
|
84 |
|
85 |
|
86 |
-
def
|
87 |
"""
|
88 |
Convert a PIL image into markdown filled with the base64 string representation.
|
89 |
"""
|
@@ -92,13 +175,13 @@ def pil_to_markdown_im(image):
|
|
92 |
return img_str
|
93 |
|
94 |
|
95 |
-
def
|
96 |
decoded_image = base64.b64decode(encoded_image)
|
97 |
pil_image = Image.open(BytesIO(decoded_image))
|
98 |
return pil_image
|
99 |
|
100 |
|
101 |
-
def
|
102 |
pattern = r'<img src="data:image/png;base64,([^"]+)" />'
|
103 |
match = re.search(pattern, im_markdown_str)
|
104 |
img_b64_str = match.group(1)
|
@@ -159,12 +242,15 @@ def isolate_images_urls(prompt_list):
|
|
159 |
]
|
160 |
```
|
161 |
"""
|
|
|
162 |
linearized_list = []
|
163 |
for prompt in prompt_list:
|
164 |
# Prompt can be either a string, or a PIL image
|
165 |
if isinstance(prompt, PIL.Image.Image):
|
166 |
linearized_list.append(prompt)
|
167 |
-
elif isinstance(prompt, str):
|
|
|
|
|
168 |
if "<fake_token_around_image>" not in prompt:
|
169 |
linearized_list.append(prompt)
|
170 |
else:
|
@@ -212,9 +298,12 @@ def user_prompt_list_to_markdown(user_prompt_list: List[Union[str, PIL.Image.Ima
|
|
212 |
resulting_string = ""
|
213 |
for elem in user_prompt_list:
|
214 |
if isinstance(elem, str):
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
218 |
else:
|
219 |
raise ValueError(
|
220 |
"Unknown type for `user_prompt_list`. Expected an element of type `str` or `PIL.Image.Image` and got"
|
@@ -271,26 +360,25 @@ def format_user_prompt_with_im_history_and_system_conditioning(
|
|
271 |
Produces the resulting list that needs to go inside the processor.
|
272 |
It handles the potential image box input, the history and the system conditionning.
|
273 |
"""
|
|
|
274 |
resulting_list = copy.deepcopy(SYSTEM_PROMPT)
|
275 |
|
276 |
# Format history
|
277 |
for turn in history:
|
278 |
user_utterance, assistant_utterance = turn
|
279 |
splitted_user_utterance = split_str_on_im_markdown(user_utterance)
|
280 |
-
|
281 |
-
im_markdown_to_pil(s) if s.startswith('<img src="data:image/png;base64,') else s
|
282 |
-
for s in splitted_user_utterance
|
283 |
-
if s != ""
|
284 |
-
]
|
285 |
if isinstance(splitted_user_utterance[0], str):
|
286 |
resulting_list.append("\nUser: ")
|
287 |
else:
|
288 |
resulting_list.append("\nUser:")
|
289 |
resulting_list.extend(splitted_user_utterance)
|
290 |
resulting_list.append(f"<end_of_utterance>\nAssistant: {assistant_utterance}")
|
|
|
291 |
|
292 |
# Format current input
|
293 |
current_user_prompt_str = remove_spaces_around_token(current_user_prompt_str)
|
|
|
294 |
if current_image is None:
|
295 |
if "<img src=data:image/png;base64" in current_user_prompt_str:
|
296 |
raise ValueError("The UI does not support inputing via the text box an image in base64.")
|
@@ -300,8 +388,8 @@ def format_user_prompt_with_im_history_and_system_conditioning(
|
|
300 |
resulting_list.append("<end_of_utterance>\nAssistant:")
|
301 |
return resulting_list, current_user_prompt_list
|
302 |
else:
|
303 |
-
# Choosing to put the image first when the image is inputted through the UI, but this is an
|
304 |
-
resulting_list.extend(["\nUser:", current_image, f"{current_user_prompt_str}<end_of_utterance>\nAssistant:"])
|
305 |
return resulting_list, [current_user_prompt_str]
|
306 |
|
307 |
|
@@ -457,7 +545,14 @@ textbox = gr.Textbox(
|
|
457 |
container=False,
|
458 |
label="Text input",
|
459 |
)
|
460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
gr.Markdown(
|
462 |
"""
|
463 |
# IDEFICS
|
@@ -484,7 +579,7 @@ with gr.Blocks(title="IDEFICS-Chat", theme=gr.themes.Base()) as demo:
|
|
484 |
)
|
485 |
processor, tokenizer, model = load_processor_tokenizer_model(model_selector.value)
|
486 |
|
487 |
-
imagebox = gr.Image(type="
|
488 |
|
489 |
with gr.Accordion("Advanced parameters", open=False, visible=True) as parameter_row:
|
490 |
max_new_tokens = gr.Slider(
|
|
|
9 |
|
10 |
import gradio as gr
|
11 |
import PIL
|
12 |
+
import uuid
|
13 |
+
import requests
|
14 |
from accelerate.utils import get_max_memory, set_seed
|
15 |
from PIL import Image
|
16 |
from transformers import AutoConfig, AutoProcessor, IdeficsForVisionText2Text
|
|
|
61 |
SEED = 38
|
62 |
set_seed(38)
|
63 |
|
64 |
+
|
65 |
+
def convert_to_rgb_pil(image):
|
66 |
+
"""
|
67 |
+
Convert a PIL Image object to RGB mode and save it locally.
|
68 |
+
|
69 |
+
The function ensures that images with transparency (alpha channel)
|
70 |
+
are overlaid on a white background before saving.
|
71 |
+
|
72 |
+
Parameters:
|
73 |
+
- image (PIL.Image.Image): The input image to be processed.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
- str: The path to the saved RGB image.
|
77 |
+
|
78 |
+
"""
|
79 |
+
# Save the converted image to a temporary file
|
80 |
+
filename = f"{uuid.uuid4()}.jpg"
|
81 |
+
local_path = f"{filename}"
|
82 |
+
|
83 |
+
if image.mode != "RGB":
|
84 |
+
image_rgba = image.convert("RGBA")
|
85 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
86 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
87 |
+
alpha_composite = alpha_composite.convert("RGB")
|
88 |
+
alpha_composite.save(local_path)
|
89 |
+
else:
|
90 |
+
image.save(local_path)
|
91 |
+
|
92 |
+
return local_path # Return the path to the saved image
|
93 |
+
|
94 |
+
|
95 |
+
def convert_to_rgb(filepath_or_pilimg):
|
96 |
+
"""
|
97 |
+
Convert an image to RGB mode, handling transparency for non-RGB images.
|
98 |
+
|
99 |
+
This function can accept either a file path to an image or a PIL Image object.
|
100 |
+
For transparent images, the function overlays the image onto a white background
|
101 |
+
to handle the transparency before converting it to RGB mode.
|
102 |
+
|
103 |
+
Parameters:
|
104 |
+
- filepath_or_pilimg (str or PIL.Image.Image): The file path to an image or a PIL
|
105 |
+
Image object to be processed.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
- str: If the input was a file path, the return will be the path to the original
|
109 |
+
image (if it's already in RGB) or the path to the saved RGB image.
|
110 |
+
If the input was a PIL Image object, the return will be the path to the saved
|
111 |
+
RGB image.
|
112 |
+
|
113 |
+
"""
|
114 |
+
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
115 |
+
# for transparent images. The call to `alpha_composite` handles this case
|
116 |
+
|
117 |
+
if isinstance(filepath_or_pilimg, PIL.Image.Image):
|
118 |
+
return convert_to_rgb_pil(filepath_or_pilimg)
|
119 |
+
|
120 |
+
with Image.open(filepath_or_pilimg) as image:
|
121 |
+
# Check if the image is already in the RGB format
|
122 |
+
if image.mode == "RGB":
|
123 |
+
return filepath_or_pilimg # If already in RGB, return the original path
|
124 |
+
|
125 |
+
# Convert image to RGBA
|
126 |
+
image_rgba = image.convert("RGBA")
|
127 |
+
|
128 |
+
# Create a white background image of the same size
|
129 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
130 |
+
|
131 |
+
# Composite the original image over the white background
|
132 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
133 |
+
|
134 |
+
# Convert the composited image to RGB format
|
135 |
+
alpha_composite = alpha_composite.convert("RGB")
|
136 |
+
|
137 |
+
# Save the converted image to a temporary file
|
138 |
+
filename = f"{uuid.uuid4()}.jpg"
|
139 |
+
local_path = f"{filename}"
|
140 |
+
alpha_composite.save(local_path)
|
141 |
+
|
142 |
+
return local_path # Return the path to the saved image
|
143 |
+
|
144 |
+
|
145 |
+
def tmp_convert_to_rgb(image):
|
146 |
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
147 |
# for transparent images. The call to `alpha_composite` handles this case
|
148 |
if image.mode == "RGB":
|
|
|
156 |
|
157 |
|
158 |
# Conversion between PIL Image <-> base64 <-> Markdown utils
|
159 |
+
def tmp_pil_to_base64(pil_image):
|
160 |
"""
|
161 |
Convert an PIL image into base64 string representation
|
162 |
"""
|
|
|
166 |
return encoded_image
|
167 |
|
168 |
|
169 |
+
def tmp_pil_to_markdown_im(image):
|
170 |
"""
|
171 |
Convert a PIL image into markdown filled with the base64 string representation.
|
172 |
"""
|
|
|
175 |
return img_str
|
176 |
|
177 |
|
178 |
+
def tmp_base64_to_pil(encoded_image):
|
179 |
decoded_image = base64.b64decode(encoded_image)
|
180 |
pil_image = Image.open(BytesIO(decoded_image))
|
181 |
return pil_image
|
182 |
|
183 |
|
184 |
+
def tmp_im_markdown_to_pil(im_markdown_str):
|
185 |
pattern = r'<img src="data:image/png;base64,([^"]+)" />'
|
186 |
match = re.search(pattern, im_markdown_str)
|
187 |
img_b64_str = match.group(1)
|
|
|
242 |
]
|
243 |
```
|
244 |
"""
|
245 |
+
|
246 |
linearized_list = []
|
247 |
for prompt in prompt_list:
|
248 |
# Prompt can be either a string, or a PIL image
|
249 |
if isinstance(prompt, PIL.Image.Image):
|
250 |
linearized_list.append(prompt)
|
251 |
+
elif isinstance(prompt, str) and "/tmp/gradio/" in prompt: #isinstance(prompt, PIL.Image.Image):
|
252 |
+
linearized_list.append(prompt)
|
253 |
+
elif isinstance(prompt, str) and "/tmp/gradio/" not in prompt:
|
254 |
if "<fake_token_around_image>" not in prompt:
|
255 |
linearized_list.append(prompt)
|
256 |
else:
|
|
|
298 |
resulting_string = ""
|
299 |
for elem in user_prompt_list:
|
300 |
if isinstance(elem, str):
|
301 |
+
if "/tmp/gradio/" not in elem:
|
302 |
+
resulting_string += elem
|
303 |
+
elif "/tmp/gradio/" in elem:
|
304 |
+
resulting_string += f"![](/file={convert_to_rgb(elem)})"
|
305 |
+
elif isinstance(elem, PIL.Image.Image):
|
306 |
+
resulting_string += f"![](/file={convert_to_rgb(elem)})"
|
307 |
else:
|
308 |
raise ValueError(
|
309 |
"Unknown type for `user_prompt_list`. Expected an element of type `str` or `PIL.Image.Image` and got"
|
|
|
360 |
Produces the resulting list that needs to go inside the processor.
|
361 |
It handles the potential image box input, the history and the system conditionning.
|
362 |
"""
|
363 |
+
|
364 |
resulting_list = copy.deepcopy(SYSTEM_PROMPT)
|
365 |
|
366 |
# Format history
|
367 |
for turn in history:
|
368 |
user_utterance, assistant_utterance = turn
|
369 |
splitted_user_utterance = split_str_on_im_markdown(user_utterance)
|
370 |
+
|
|
|
|
|
|
|
|
|
371 |
if isinstance(splitted_user_utterance[0], str):
|
372 |
resulting_list.append("\nUser: ")
|
373 |
else:
|
374 |
resulting_list.append("\nUser:")
|
375 |
resulting_list.extend(splitted_user_utterance)
|
376 |
resulting_list.append(f"<end_of_utterance>\nAssistant: {assistant_utterance}")
|
377 |
+
|
378 |
|
379 |
# Format current input
|
380 |
current_user_prompt_str = remove_spaces_around_token(current_user_prompt_str)
|
381 |
+
|
382 |
if current_image is None:
|
383 |
if "<img src=data:image/png;base64" in current_user_prompt_str:
|
384 |
raise ValueError("The UI does not support inputing via the text box an image in base64.")
|
|
|
388 |
resulting_list.append("<end_of_utterance>\nAssistant:")
|
389 |
return resulting_list, current_user_prompt_list
|
390 |
else:
|
391 |
+
# Choosing to put the image first when the image is inputted through the UI, but this is an arbitrary choice.
|
392 |
+
resulting_list.extend(["\nUser:", Image.open(current_image), f"{current_user_prompt_str}<end_of_utterance>\nAssistant:"]) #current_image
|
393 |
return resulting_list, [current_user_prompt_str]
|
394 |
|
395 |
|
|
|
545 |
container=False,
|
546 |
label="Text input",
|
547 |
)
|
548 |
+
|
549 |
+
css = """
|
550 |
+
#chatbot {
|
551 |
+
background-image: url('https://huggingface.co/spaces/ysharma/m4-dialogue_copy4/resolve/main/idefics_720_2.png');
|
552 |
+
background-repeat: repeat;}
|
553 |
+
"""
|
554 |
+
|
555 |
+
with gr.Blocks(title="IDEFICS-Chat", theme=gr.themes.Base(), css=css) as demo:
|
556 |
gr.Markdown(
|
557 |
"""
|
558 |
# IDEFICS
|
|
|
579 |
)
|
580 |
processor, tokenizer, model = load_processor_tokenizer_model(model_selector.value)
|
581 |
|
582 |
+
imagebox = gr.Image(type="filepath", label="Image input")
|
583 |
|
584 |
with gr.Accordion("Advanced parameters", open=False, visible=True) as parameter_row:
|
585 |
max_new_tokens = gr.Slider(
|