Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,790 Bytes
e352103 6bc5bc2 e352103 6bc5bc2 e352103 9ad1205 e352103 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")
model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3",
torch_dtype=torch.bfloat16,
#_attn_implementation="flash_attention_2",
trust_remote_code=True).to("cuda")
BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
EOS_WORDS_IDS = [processor.tokenizer.eos_token_id]
@spaces.GPU
def model_inference(
images, text, decoding_strategy, temperature, max_new_tokens,
repetition_penalty, top_p
):
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along the image(s).")
if isinstance(images, Image.Image):
images = [images]
if isinstance(text, str):
text = "<image>" + text
text = [text]
inputs = processor(text=text, images=images, padding=True, return_tensors="pt").to("cuda")
print("inputs",inputs)
assert decoding_strategy in [
"Greedy",
"Top P Sampling",
]
if decoding_strategy == "Greedy":
do_sample = False
elif decoding_strategy == "Top P Sampling":
do_sample = True
# Generate
generated_ids = model.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=max_new_tokens,
temperature=temperature, do_sample=do_sample, repetition_penalty=repetition_penalty,
top_p=top_p),
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
#generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
print("INPUT:", text, "|OUTPUT:", generated_texts)
return generated_texts[0]
with gr.Blocks(fill_height=True) as demo:
gr.Markdown("## IDEFICS2Llama 🐶")
gr.Markdown("Play with [IDEFICS2Llama](https://huggingface.co/HuggingFaceM4/idefics2-8b) in this demo. To get started, upload an image and text or try one of the examples.")
gr.Markdown("**Important note**: This model is not made for chatting, the chatty IDEFICS2 will be released in the upcoming days. **This model is very strong on various tasks, including visual question answering, document retrieval and more, you can see it through the examples.**")
gr.Markdown("Learn more about IDEFICS2 in this [blog post](https://huggingface.co/blog/idefics2).")
with gr.Column():
image_input = gr.Image(label="Upload your Image", type="pil")
query_input = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Submit")
output = gr.Textbox(label="Output")
with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"):
examples=[["example_images/travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/dummy_pdf.png", "How much percent is the order status?", "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.", "Greedy", 0.4, 512, 1.2, 0.8],
["example_images/s2w_example.png", "What is this UI about?", "Greedy", 0.4, 512, 1.2, 0.8]]
# Hyper-parameters for generation
max_new_tokens = gr.Slider(
minimum=8,
maximum=1024,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.01,
maximum=5.0,
value=1.2,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
)
temperature = gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.4,
step=0.1,
interactive=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
)
top_p = gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
interactive=True,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)
decoding_strategy = gr.Radio(
[
"Greedy",
"Top P Sampling",
],
value="Greedy",
label="Decoding strategy",
interactive=True,
info="Higher values is equivalent to sampling more low-probability tokens.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(
visible=(
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(
visible=(
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
)
),
inputs=decoding_strategy,
outputs=repetition_penalty,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
inputs=decoding_strategy,
outputs=top_p,
)
gr.Examples(
examples = examples,
inputs=[image_input, query_input, decoding_strategy, temperature,
max_new_tokens, repetition_penalty, top_p],
outputs=output,
fn=model_inference
)
submit_btn.click(model_inference, inputs = [image_input, query_input, decoding_strategy, temperature,
max_new_tokens, repetition_penalty, top_p], outputs=output)
demo.launch(debug=True) |