Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer | |
from threading import Thread | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import spaces | |
#import subprocess | |
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct") | |
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct", | |
torch_dtype=torch.bfloat16, | |
#_attn_implementation="flash_attention_2" | |
).to("cuda") | |
def model_inference( | |
input_dict, history, decoding_strategy, temperature, max_new_tokens, | |
repetition_penalty, top_p | |
): | |
text = input_dict["text"] | |
print(input_dict["files"]) | |
if len(input_dict["files"]) > 1: | |
images = [Image.open(image).convert("RGB") for image in input_dict["files"]] | |
elif len(input_dict["files"]) == 1: | |
images = [Image.open(input_dict["files"][0]).convert("RGB")] | |
else: | |
images = [] | |
if text == "" and not images: | |
gr.Error("Please input a query and optionally image(s).") | |
if text == "" and images: | |
gr.Error("Please input a text query along the image(s).") | |
resulting_messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "image"} for _ in range(len(images))] + [ | |
{"type": "text", "text": text} | |
] | |
} | |
] | |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[images], return_tensors="pt") | |
inputs = {k: v.to("cuda") for k, v in inputs.items()} | |
generation_args = { | |
"max_new_tokens": max_new_tokens, | |
"repetition_penalty": repetition_penalty, | |
} | |
assert decoding_strategy in [ | |
"Greedy", | |
"Top P Sampling", | |
] | |
if decoding_strategy == "Greedy": | |
generation_args["do_sample"] = False | |
elif decoding_strategy == "Top P Sampling": | |
generation_args["temperature"] = temperature | |
generation_args["do_sample"] = True | |
generation_args["top_p"] = top_p | |
generation_args.update(inputs) | |
# Generate | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens= True) | |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) | |
generated_text = "" | |
thread = Thread(target=model.generate, kwargs=generation_args) | |
thread.start() | |
thread.join() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
generated_text_without_prompt = buffer#[len(ext_buffer):] | |
time.sleep(0.01) | |
yield buffer | |
examples=[ | |
[{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8], | |
[{"text": "I'm planning a visit to this temple, give me travel tips.", "files": ["example_images/examples_wat_arun.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8], | |
[{"text": "What is the due date and the invoice date?", "files": ["example_images/examples_invoice.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], | |
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], | |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}, "Greedy", 0.4, 512, 1.2, 0.8], | |
] | |
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM: Small yet Mighty 💫", | |
description="Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This checkpoint works best with single turn conversations, so clear the conversation after a single turn.", | |
examples=examples, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, | |
additional_inputs=[gr.Radio(["Top P Sampling", | |
"Greedy"], | |
value="Greedy", | |
label="Decoding strategy", | |
#interactive=True, | |
info="Higher values is equivalent to sampling more low-probability tokens.", | |
), gr.Slider( | |
minimum=0.0, | |
maximum=5.0, | |
value=0.4, | |
step=0.1, | |
interactive=True, | |
label="Sampling temperature", | |
info="Higher values will produce more diverse outputs.", | |
), | |
gr.Slider( | |
minimum=8, | |
maximum=1024, | |
value=512, | |
step=1, | |
interactive=True, | |
label="Maximum number of new tokens to generate", | |
), gr.Slider( | |
minimum=0.01, | |
maximum=5.0, | |
value=1.2, | |
step=0.01, | |
interactive=True, | |
label="Repetition penalty", | |
info="1.0 is equivalent to no penalty", | |
), | |
gr.Slider( | |
minimum=0.01, | |
maximum=0.99, | |
value=0.8, | |
step=0.01, | |
interactive=True, | |
label="Top P", | |
info="Higher values is equivalent to sampling more low-probability tokens.", | |
)],cache_examples=False | |
) | |
demo.launch(debug=True) | |