File size: 10,040 Bytes
dd432c7
 
 
 
 
717802d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b36f6d5
 
 
 
 
 
 
717802d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0fdf5e
717802d
 
 
 
4f7f5ba
717802d
 
 
b6623a0
717802d
 
19c6190
4f7f5ba
717802d
 
 
59dd5ea
717802d
1bfb4c8
717802d
59dd5ea
717802d
 
 
59dd5ea
 
717802d
 
 
 
59dd5ea
3f22aa9
717802d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
try:
    import detectron2
except:
    import os 
    os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import torch
from detectron2.utils.logger import setup_logger
setup_logger()

from detectron2.config import get_cfg
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.modeling import build_model
from detectron2.utils.visualizer import Visualizer
from detectron2.data.detection_utils import read_image
from detectron2.data import MetadataCatalog

import numpy as np
import cv2
from PIL import Image
import random
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import io
from pickle import load

torch.manual_seed(0)
np.random.seed(0)
random.seed(0)

from base_cam import EigenCAM
from pytorch_grad_cam.utils.model_targets import FasterRCNNBoxScoreTarget

class Detectron2Monitor():
    def __init__(self, label_list, label_dict, config_file, model_file):
        self.label_list = label_list
        self.cfg = self._setup_cfg(config_file, model_file)
        self.model = build_model(self.cfg)
        self.model.eval()
        checkpointer = DetectionCheckpointer(self.model)
        checkpointer.load(self.cfg.MODEL.WEIGHTS)
        self.monitors_dict = self._load_monitor()
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.class_dict = label_dict
        
    def _setup_cfg(self, config_file, model_file):  
        cfg = get_cfg()
        cfg.merge_from_file(config_file)
        cfg.MODEL.WEIGHTS = model_file
        cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
        if torch.cuda.is_available():
            cfg.MODEL.DEVICE = "cuda"
        else:
            cfg.MODEL.DEVICE = "cpu"
        cfg.freeze()
        return cfg
    
    def _get_input_dict(self, original_image):
        height, width = original_image.shape[:2]
        transform_gen = T.ResizeShortestEdge(
        [self.cfg.INPUT.MIN_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TEST], self.cfg.INPUT.MAX_SIZE_TEST
        )
        image = transform_gen.get_transform(original_image).apply_image(original_image)
        image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
        inputs = {"image": image, "height": height, "width": width}
        return inputs
    
    def _postprocess_cam(self, raw_cam, img_width, img_height):
        cam_orig = np.sum(raw_cam, axis=0)  # [H,W]
        cam_orig = np.maximum(cam_orig, 0)  # ReLU
        cam_orig -= np.min(cam_orig)
        cam_orig /= np.max(cam_orig)
        cam = cv2.resize(cam_orig, (img_width, img_height))
        return cam

    def _inference(self, inputs):
        with torch.no_grad():
            images = self.model.preprocess_image(inputs)  
            features = self.model.backbone(images.tensor)  
            proposals, _ = self.model.proposal_generator(images, features, None)  # RPN

            features_ = [features[f] for f in self.model.roi_heads.box_in_features]
            box_features = self.model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
            box_features = self.model.roi_heads.box_head(box_features)  # features of all 1k candidates
            predictions = self.model.roi_heads.box_predictor(box_features)
            pred_instances, pred_inds = self.model.roi_heads.box_predictor.inference(predictions, proposals)
            pred_instances = self.model.roi_heads.forward_with_given_boxes(features, pred_instances)

            # output boxes, masks, scores, etc
            pred_instances = self.model._postprocess(pred_instances, inputs, images.image_sizes)  # scale box to orig size
            # features of the proposed boxes
            feats = box_features[pred_inds]
        return pred_instances, feats 
     
    def _load_monitor(self):
        with open("monitors_dict.pkl", 'rb') as f:
            monitors_dict = load(f)
        return monitors_dict
    
    def _fasterrcnn_reshape_transform(self, x):
        target_size = x['p6'].size()[-2 : ]
        activations = []
        for key, value in x.items():
            activations.append(torch.nn.functional.interpolate(torch.abs(value), target_size, mode='bilinear'))
        activations = torch.cat(activations, axis=1)
        return activations

    def get_output(self, img):
        image = read_image(img, format="BGR")
        input_image_dict = [self._get_input_dict(image)]
        
        pred_instances, feats = self._inference(input_image_dict)
        feats = feats.cpu().detach().numpy()
        detections = pred_instances[0]["instances"].to("cpu")
        cls_idxs = detections.pred_classes.detach().numpy()
        # get labels from class indices
        labels = [self.class_dict[i] for i in cls_idxs]
        # count values in labels, and return a dictionary
        labels_count_dict = dict((i, labels.count(i)) for i in labels)
        v = Visualizer(image[..., ::-1], MetadataCatalog.get("bdd_dataset"), scale=1)
        v = v.draw_instance_predictions(detections)
        img_detection = v.get_image()
        df = pd.DataFrame(list(labels_count_dict.items()), columns=['Object', 'Count'])
        verdicts = []
        for label, feat in zip(labels, feats):
            verdict = self.monitors_dict[label].make_verdicts(feat[np.newaxis,:])[0] if label in self.monitors_dict else True
            verdicts.append(verdict)
        detections_ood = detections[[i for i, x in enumerate(verdicts) if not x]]
        detections_ood.pred_classes = torch.tensor([10]*len(detections_ood.pred_classes))
        v = Visualizer(image[..., ::-1], MetadataCatalog.get("bdd_dataset"), scale=1)
        v = v.draw_instance_predictions(detections_ood)
        img_ood = v.get_image()
        pred_bboxes = detections.pred_boxes.tensor.numpy().astype(np.int32)
        target_layers = [self.model.backbone]
        targets = [FasterRCNNBoxScoreTarget(labels=labels, bounding_boxes=pred_bboxes)]
        cam = EigenCAM(self.model,
                        target_layers, 
                        use_cuda=False,
                        reshape_transform=self._fasterrcnn_reshape_transform)
        grayscale_cam = cam(input_image_dict, targets)
        cam = self._postprocess_cam(grayscale_cam, input_image_dict[0]["width"], input_image_dict[0]["height"])
        plt.rcParams["figure.figsize"] = (30,10)
        plt.imshow(img_detection[..., ::-1], interpolation='none')
        plt.imshow(cam, cmap='jet', alpha=0.5)
        plt.axis("off")
        img_buff = io.BytesIO()
        plt.savefig(img_buff, format='png', bbox_inches='tight', pad_inches=0)
        img_cam = Image.open(img_buff)
        image_dict = {}
        image_dict["image"] = image
        image_dict["cam"] = img_cam
        image_dict["detection"] = img_detection
        image_dict["verdict"] = img_ood
        return image_dict, df

config_file = "vanilla.yaml"
model_file = "model_final_vos_resnet_bdd.pth"
label_dict = {
            0: 'pedestrian',
            1: 'rider',
            2: 'car',
            3: 'truck',
            4: 'bus',
            5: 'train',
            6: 'motor',
            7: 'bike',
            8: 'traffic light',
            9: 'traffic sign',
            10: 'OOD'
        }
label_list = list(label_dict.values())
MetadataCatalog.get("bdd_dataset").set(thing_classes=label_list)
extractor = Detectron2Monitor(config_file=config_file, label_list=label_list, label_dict=label_dict, model_file=model_file)

# %%
def inference_gd(file):
    image_dict, df = extractor.get_output(file)
    return image_dict["detection"], df, image_dict["verdict"], image_dict["cam"]


examples = ["examples/0.jpg", "examples/1.jpg", "examples/2.jpg", "examples/3.jpg"]
with gr.Blocks(theme='gradio/monochrome') as demo:
    gr.Markdown("# Runtime Monitoring Object Detection")
    gr.Markdown(
        """This interactive demo is based on the box abstraction-based monitors for Faster R-CNN model. The model is trained using [Detectron2](https://github.com/facebookresearch/detectron2) library on the in-distribution dataset [Berkeley DeepDrive-100k](https://www.bdd100k.com/), which contains objects within autonomous driving domain. The monitors are constructed by abstraction of extracted feature from the training data. The demo showcases the monitors' capacity to reject problematic detections due to out-of-distribution(OOD) objects. 

To utilize the demo, upload an image and click on *"Infer"* to view the following results: 

- **Detection**: outputs of Object Detector
- **Detection summary**: a summary of the detection outputs
- **Verdict**: verdicts from Monitors (problematic detections caused by out-of-distribution(OOD) objects will be identified as OOD objects)
- **Explainable AI**: visual explanation generated by [grad-cam](https://github.com/jacobgil/pytorch-grad-cam) library which is based on Class Activation Mapping(CAM) method.

You can also select an image from the cached **Examples** to quickly try out. Without clicking *"Infer"*, the cached outputs will be loaded automatically. 

In case the output image seems too small, simply right-click on the image, and choose “Open image in new tab” to visualize it in full size.
    """
    )
    with gr.Row().style(equal_height=True):
        with gr.Column():
            image = gr.Image(type="filepath", label="Input")
            button = gr.Button("Infer")
            
        with gr.Column():
            with gr.Tab("Detection"):
                detection = gr.Image(label="Output")
            with gr.Tab("Detection summary"):
                df = gr.Dataframe(label="Detection summary")
            with gr.Tab("Verdict"):
                verdict = gr.Image(label="Output")
            with gr.Tab("Explainable AI"):
                cam = gr.Image(label="Output")
    examples_block = gr.Examples(inputs=image, examples=examples, fn=inference_gd, outputs=[detection, df, verdict, cam], cache_examples=True)
    button.click(fn=inference_gd, inputs=image, outputs=[detection, df, verdict, cam])

demo.launch()