Hugo HE
init
717802d
raw
history blame contribute delete
No virus
9.06 kB
import numpy as np
import torch
import ttach as tta
from typing import Callable, List, Tuple
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
from pytorch_grad_cam.utils.image import scale_cam_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
# https://arxiv.org/abs/2008.00299
class BaseCAM:
def __init__(self,
model: torch.nn.Module,
target_layers: List[torch.nn.Module],
use_cuda: bool = False,
reshape_transform: Callable = None,
compute_input_gradient: bool = False,
uses_gradients: bool = True) -> None:
self.model = model.eval()
self.target_layers = target_layers
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
self.reshape_transform = reshape_transform
self.compute_input_gradient = compute_input_gradient
self.uses_gradients = uses_gradients
self.activations_and_grads = ActivationsAndGradients(
self.model, target_layers, reshape_transform)
""" Get a vector of weights for every channel in the target layer.
Methods that return weights channels,
will typically need to only implement this function. """
def get_cam_weights(self,
input_tensor: torch.Tensor,
target_layers: List[torch.nn.Module],
targets: List[torch.nn.Module],
activations: torch.Tensor,
grads: torch.Tensor) -> np.ndarray:
raise Exception("Not Implemented")
def get_cam_image(self,
input_tensor: torch.Tensor,
target_layer: torch.nn.Module,
targets: List[torch.nn.Module],
activations: torch.Tensor,
grads: torch.Tensor,
eigen_smooth: bool = False) -> np.ndarray:
weights = self.get_cam_weights(input_tensor,
target_layer,
targets,
activations,
grads)
weighted_activations = weights[:, :, None, None] * activations
if eigen_smooth:
cam = get_2d_projection(weighted_activations)
else:
cam = weighted_activations.sum(axis=1)
return cam
def forward(self,
input_tensor: torch.Tensor,
targets: List[torch.nn.Module],
eigen_smooth: bool = False) -> np.ndarray:
if self.cuda:
input_tensor = input_tensor.cuda()
if self.compute_input_gradient:
input_tensor = torch.autograd.Variable(input_tensor,
requires_grad=True)
outputs = self.activations_and_grads(input_tensor)
if targets is None:
target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1)
targets = [ClassifierOutputTarget(
category) for category in target_categories]
if self.uses_gradients:
self.model.zero_grad()
loss = sum([target(output)
for target, output in zip(targets, outputs)])
loss.backward(retain_graph=True)
# In most of the saliency attribution papers, the saliency is
# computed with a single target layer.
# Commonly it is the last convolutional layer.
# Here we support passing a list with multiple target layers.
# It will compute the saliency image for every image,
# and then aggregate them (with a default mean aggregation).
# This gives you more flexibility in case you just want to
# use all conv layers for example, all Batchnorm layers,
# or something else.
cam_per_layer = self.compute_cam_per_layer(input_tensor,
targets,
eigen_smooth)
return self.aggregate_multi_layers(cam_per_layer)
def get_target_width_height(self,
input_tensor: torch.Tensor) -> Tuple[int, int]:
width, height = input_tensor.size(-1), input_tensor.size(-2)
return width, height
def compute_cam_per_layer(
self,
input_tensor: torch.Tensor,
targets: List[torch.nn.Module],
eigen_smooth: bool) -> np.ndarray:
activations_list = [a.cpu().data.numpy()
for a in self.activations_and_grads.activations]
grads_list = [g.cpu().data.numpy()
for g in self.activations_and_grads.gradients]
target_size = self.get_target_width_height(input_tensor[0]["image"])
cam_per_target_layer = []
# Loop over the saliency image from every layer
for i in range(len(self.target_layers)):
target_layer = self.target_layers[i]
layer_activations = None
layer_grads = None
if i < len(activations_list):
layer_activations = activations_list[i]
if i < len(grads_list):
layer_grads = grads_list[i]
cam = self.get_cam_image(input_tensor,
target_layer,
targets,
layer_activations,
layer_grads,
eigen_smooth)
cam = np.maximum(cam, 0)
scaled = scale_cam_image(cam, target_size)
cam_per_target_layer.append(scaled[:, None, :])
return cam_per_target_layer
def aggregate_multi_layers(
self,
cam_per_target_layer: np.ndarray) -> np.ndarray:
cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
cam_per_target_layer = np.maximum(cam_per_target_layer, 0)
result = np.mean(cam_per_target_layer, axis=1)
return scale_cam_image(result)
def forward_augmentation_smoothing(self,
input_tensor: torch.Tensor,
targets: List[torch.nn.Module],
eigen_smooth: bool = False) -> np.ndarray:
transforms = tta.Compose(
[
tta.HorizontalFlip(),
tta.Multiply(factors=[0.9, 1, 1.1]),
]
)
cams = []
for transform in transforms:
augmented_tensor = transform.augment_image(input_tensor)
cam = self.forward(augmented_tensor,
targets,
eigen_smooth)
# The ttach library expects a tensor of size BxCxHxW
cam = cam[:, None, :, :]
cam = torch.from_numpy(cam)
cam = transform.deaugment_mask(cam)
# Back to numpy float32, HxW
cam = cam.numpy()
cam = cam[:, 0, :, :]
cams.append(cam)
cam = np.mean(np.float32(cams), axis=0)
return cam
def __call__(self,
input_tensor: torch.Tensor,
targets: List[torch.nn.Module] = None,
aug_smooth: bool = False,
eigen_smooth: bool = False) -> np.ndarray:
# Smooth the CAM result with test time augmentation
if aug_smooth is True:
return self.forward_augmentation_smoothing(
input_tensor, targets, eigen_smooth)
return self.forward(input_tensor,
targets, eigen_smooth)
def __del__(self):
self.activations_and_grads.release()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_tb):
self.activations_and_grads.release()
if isinstance(exc_value, IndexError):
# Handle IndexError here...
print(
f"An exception occurred in CAM with block: {exc_type}. Message: {exc_value}")
return True
class EigenCAM(BaseCAM):
def __init__(self, model, target_layers, use_cuda=False,
reshape_transform=None):
super(EigenCAM, self).__init__(model,
target_layers,
use_cuda,
reshape_transform,
uses_gradients=False)
def get_cam_image(self,
input_tensor,
target_layer,
target_category,
activations,
grads,
eigen_smooth):
return get_2d_projection(activations)