import requests import os os.environ["HF_TOKEN"] model_id = "sentence-transformers/all-MiniLM-L6-v2" hf_token = os.environ.get('HF_TOKEN') api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}" headers = {"Authorization": f"Bearer {hf_token}"} def text_embedding(texts): response = requests.post(api_url, headers=headers, json={"inputs": texts, "options":{"wait_for_model":True}}) return response.json()