hushh / app.py
Justin Donaldson
add code
fe3bafe
raw
history blame
2.6 kB
import gradio as gr
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer
import sentence_transformers
from sentence_transformers import SentenceTransformer, util
import pickle
from PIL import Image
import os
# (Pdb) query_emb.shape
# torch.Size([1, 512])
# (Pdb) img_emb.shape
# (24996, 512)
## Define model
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
#Open the precomputed embeddings
emb_filename = 'lv-handbags.pkl'
# emb_filename = 'unsplash-25k-photos-embeddings.pkl'
with open(emb_filename, 'rb') as fIn:
img_names, img_emb = pickle.load(fIn)
#print(f'img_emb: {print(img_emb)}')
#print(f'img_names: {print(img_names)}')
def search_text(query, top_k=4):
"""" Search an image based on the text query.
Args:
query ([string]): [query you want search for]
top_k (int, optional): [Amount of images o return]. Defaults to 1.
Returns:
[list]: [list of images that are related to the query.]
"""
# First, we encode the query.
inputs = tokenizer([query], padding=True, return_tensors="pt")
query_emb = model.get_text_features(**inputs)
# import pdb; pdb.set_trace()
# Then, we use the util.semantic_search function, which computes the cosine-similarity
# between the query embedding and all image embeddings.
# It then returns the top_k highest ranked images, which we output
hits = util.semantic_search(query_emb, img_emb, top_k=top_k)[0]
image=[]
for hit in hits:
#print(img_names[hit['corpus_id']])
# object = Image.open(os.path.join("photos/", img_names[hit['corpus_id']]))
object = Image.open(os.path.join("lvphotos/", img_names[hit['corpus_id']]))
image.append(object)
#print(f'array length is: {len(image)}')
return image
iface = gr.Interface(
title = "Hushh Text to Image using CLIP Model on Louis Vuitton API",
description = "Quick demo of using text to perform vector search on an image collection",
article = "TBD",
fn=search_text,
inputs=[gr.Textbox(lines=4,
label="Write what you are looking for in an image...",
placeholder="Text Here...")],
outputs=[gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")]
,examples=[
[("Small Purse")],
[("Big Bag")],
]
).launch(debug=True)