Commit
β’
1a833ba
1
Parent(s):
4984c7e
Fix random seed and add a peak to last used seed
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import torch
|
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
|
|
5 |
from diffusers import (
|
6 |
DiffusionPipeline,
|
7 |
AutoencoderKL,
|
@@ -110,8 +111,9 @@ def inference(
|
|
110 |
# Rest of your existing code
|
111 |
control_image_small = center_crop_resize(control_image)
|
112 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
113 |
-
|
114 |
-
|
|
|
115 |
out = main_pipe(
|
116 |
prompt=prompt,
|
117 |
negative_prompt=negative_prompt,
|
@@ -139,7 +141,7 @@ def inference(
|
|
139 |
control_guidance_end=float(control_guidance_end),
|
140 |
controlnet_conditioning_scale=float(controlnet_conditioning_scale)
|
141 |
)
|
142 |
-
return out_image["images"][0], gr.update(visible=True)
|
143 |
|
144 |
#return out
|
145 |
|
@@ -170,7 +172,8 @@ with gr.Blocks(css=css) as app:
|
|
170 |
control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="Start of ControlNet")
|
171 |
control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="End of ControlNet")
|
172 |
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Strength of the upscaler")
|
173 |
-
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 means random seed"
|
|
|
174 |
run_btn = gr.Button("Run")
|
175 |
with gr.Column():
|
176 |
result_image = gr.Image(label="Illusion Diffusion Output", interactive=False, elem_id="output")
|
@@ -180,11 +183,17 @@ with gr.Blocks(css=css) as app:
|
|
180 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
181 |
|
182 |
history = show_gallery_history()
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
run_btn.click(
|
185 |
inference,
|
186 |
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
|
187 |
-
outputs=[result_image, share_group]
|
188 |
).then(
|
189 |
fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
|
190 |
)
|
|
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
+
import random
|
6 |
from diffusers import (
|
7 |
DiffusionPipeline,
|
8 |
AutoencoderKL,
|
|
|
111 |
# Rest of your existing code
|
112 |
control_image_small = center_crop_resize(control_image)
|
113 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
114 |
+
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
|
115 |
+
generator = torch.manual_seed(my_seed)
|
116 |
+
|
117 |
out = main_pipe(
|
118 |
prompt=prompt,
|
119 |
negative_prompt=negative_prompt,
|
|
|
141 |
control_guidance_end=float(control_guidance_end),
|
142 |
controlnet_conditioning_scale=float(controlnet_conditioning_scale)
|
143 |
)
|
144 |
+
return out_image["images"][0], gr.update(visible=True), my_seed
|
145 |
|
146 |
#return out
|
147 |
|
|
|
172 |
control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="Start of ControlNet")
|
173 |
control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="End of ControlNet")
|
174 |
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Strength of the upscaler")
|
175 |
+
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 means random seed")
|
176 |
+
used_seed = gr.Number(label="Last seed used",interactive=False)
|
177 |
run_btn = gr.Button("Run")
|
178 |
with gr.Column():
|
179 |
result_image = gr.Image(label="Illusion Diffusion Output", interactive=False, elem_id="output")
|
|
|
183 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
184 |
|
185 |
history = show_gallery_history()
|
186 |
+
prompt.submit(
|
187 |
+
inference,
|
188 |
+
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
|
189 |
+
outputs=[result_image, share_group, used_seed]
|
190 |
+
).then(
|
191 |
+
fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
|
192 |
+
)
|
193 |
run_btn.click(
|
194 |
inference,
|
195 |
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
|
196 |
+
outputs=[result_image, share_group, used_seed]
|
197 |
).then(
|
198 |
fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
|
199 |
)
|