Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,724 Bytes
15ee8f1 25c0a98 15ee8f1 25c0a98 15ee8f1 25c0a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
#!/usr/bin/env python
import gradio as gr
import pandas as pd
from papers import PaperList
DESCRIPTION = "# ICLR 2024 Papers"
paper_list = PaperList()
DEFAULT_COLUMNS = [
"Title",
"Type",
"Paper page",
"OpenReview",
"GitHub",
"Spaces",
"Models",
"Datasets",
"claimed",
]
def update_num_papers(df: pd.DataFrame) -> str:
return f"{len(df)} / {len(paper_list.df_raw)} ({len(df[df['claimed'].str.contains('✅')])} claimed)"
def update_df(
title_search_query: str,
abstract_search_query: str,
max_num_to_retrieve: int,
filter_names: list,
presentation_type: str,
column_names: list[str],
) -> pd.DataFrame:
return gr.DataFrame(
value=paper_list.search(
title_search_query,
abstract_search_query,
max_num_to_retrieve,
filter_names,
presentation_type,
column_names,
),
datatype=paper_list.get_column_datatypes(column_names),
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
search_title = gr.Textbox(label="Search title")
with gr.Row():
with gr.Column(scale=4):
search_abstract = gr.Textbox(
label="Search abstract",
info="The result may not be accurate as the abstract does not contain all the information.",
)
with gr.Column(scale=1):
max_num_to_retrieve = gr.Slider(
label="Max number to retrieve",
info="This is used only for search on abstracts.",
minimum=1,
maximum=len(paper_list.df_raw),
step=1,
value=100,
)
filter_names = gr.CheckboxGroup(
label="Filter",
choices=[
"Paper page",
"GitHub",
"Space",
"Model",
"Dataset",
],
)
presentation_type = gr.Radio(
label="Presentation Type",
choices=["(ALL)", "Oral", "Spotlight Poster", "Poster"],
value="(ALL)",
)
column_names = gr.CheckboxGroup(label="Columns", choices=paper_list.get_column_names(), value=DEFAULT_COLUMNS)
num_papers = gr.Textbox(
label="Number of papers", value=update_num_papers(paper_list.df_prettified), interactive=False
)
df = gr.Dataframe(
value=paper_list.df_prettified,
datatype=paper_list.get_column_datatypes(paper_list.get_column_names()),
type="pandas",
row_count=(0, "dynamic"),
interactive=False,
height=1000,
elem_id="table",
wrap=True,
)
inputs = [
search_title,
search_abstract,
max_num_to_retrieve,
filter_names,
presentation_type,
column_names,
]
gr.on(
triggers=[
search_title.submit,
search_abstract.submit,
filter_names.input,
presentation_type.input,
column_names.input,
],
fn=update_df,
inputs=inputs,
outputs=df,
api_name=False,
).then(
fn=update_num_papers,
inputs=df,
outputs=num_papers,
queue=False,
api_name=False,
)
demo.load(
fn=update_df,
inputs=inputs,
outputs=df,
api_name=False,
).then(
fn=update_num_papers,
inputs=df,
outputs=num_papers,
queue=False,
api_name=False,
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False)
|