from __future__ import annotations import numpy as np import pandas as pd import requests from huggingface_hub.hf_api import SpaceInfo class PaperList: def __init__(self): self.organization_name = "ICML2022" self.table = pd.read_csv("papers.csv") self._preprcess_table() self.table_header = """ Paper Authors pdf arXiv GitHub HF Spaces HF Models HF Datasets """ @staticmethod def load_space_info(author: str) -> list[SpaceInfo]: path = "https://huggingface.co/api/spaces" r = requests.get(path, params={"author": author}) d = r.json() return [SpaceInfo(**x) for x in d] def add_spaces_to_table(self, organization_name: str, df: pd.DataFrame) -> pd.DataFrame: spaces = self.load_space_info(organization_name) name2space = {s.id.split("/")[1].lower(): f"https://huggingface.co/spaces/{s.id}" for s in spaces} df["hf_space"] = df.loc[:, ["hf_space", "github"]].apply( lambda x: ( x[0] if isinstance(x[0], str) else name2space.get(x[1].split("/")[-1].lower() if isinstance(x[1], str) else "", np.nan) ), axis=1, ) return df def _preprcess_table(self) -> None: self.table = self.add_spaces_to_table(self.organization_name, self.table) self.table["title_lowercase"] = self.table.title.str.lower() rows = [] for row in self.table.itertuples(): paper = f'{row.title}' pdf = f'pdf' arxiv = f'arXiv' if isinstance(row.arxiv, str) else "" github = f'GitHub' if isinstance(row.github, str) else "" hf_space = f'Space' if isinstance(row.hf_space, str) else "" hf_model = f'Model' if isinstance(row.hf_model, str) else "" hf_dataset = ( f'Dataset' if isinstance(row.hf_dataset, str) else "" ) row = f""" {paper} {row.authors} {pdf} {arxiv} {github} {hf_space} {hf_model} {hf_dataset} """ rows.append(row) self.table["html_table_content"] = rows def render(self, search_query: str, case_sensitive: bool, filter_names: list[str]) -> tuple[int, str]: df = self.add_spaces_to_table(self.organization_name, self.table) if search_query: if case_sensitive: df = df[df.title.str.contains(search_query)] else: df = df[df.title_lowercase.str.contains(search_query.lower())] has_arxiv = "arXiv" in filter_names has_github = "GitHub" in filter_names has_hf_space = "HF Space" in filter_names has_hf_model = "HF Model" in filter_names has_hf_dataset = "HF Dataset" in filter_names df = self.filter_table(df, has_arxiv, has_github, has_hf_space, has_hf_model, has_hf_dataset) return len(df), self.to_html(df, self.table_header) @staticmethod def filter_table( df: pd.DataFrame, has_arxiv: bool, has_github: bool, has_hf_space: bool, has_hf_model: bool, has_hf_dataset: bool, ) -> pd.DataFrame: if has_arxiv: df = df[~df.arxiv.isna()] if has_github: df = df[~df.github.isna()] if has_hf_space: df = df[~df.hf_space.isna()] if has_hf_model: df = df[~df.hf_model.isna()] if has_hf_dataset: df = df[~df.hf_dataset.isna()] return df @staticmethod def to_html(df: pd.DataFrame, table_header: str) -> str: table_data = "".join(df.html_table_content) html = f""" {table_header} {table_data}
""" return html