from __future__ import annotations
import numpy as np
import pandas as pd
class PaperList:
def __init__(self):
self.organization_name = 'ICML2023'
self.table = pd.read_csv('papers.csv')
self._preprocess_table()
self.table_header = '''
Title |
Authors |
arXiv |
GitHub |
Paper pages |
Spaces |
Models |
Datasets |
Claimed |
'''
def _preprocess_table(self) -> None:
self.table['title_lowercase'] = self.table.title.str.lower()
rows = []
for row in self.table.itertuples():
title = f'{row.title}'
arxiv = f'arXiv' if isinstance(
row.arxiv, str) else ''
github = f'GitHub' if isinstance(
row.github, str) else ''
hf_paper = f'Paper page' if isinstance(
row.hf_paper, str) else ''
hf_space = f'Space' if isinstance(
row.hf_space, str) else ''
hf_model = f'Model' if isinstance(
row.hf_model, str) else ''
hf_dataset = f'Dataset' if isinstance(
row.hf_dataset, str) else ''
author_linked = '✅' if ~np.isnan(
row.n_linked_authors) and row.n_linked_authors > 0 else ''
n_linked_authors = '' if np.isnan(row.n_linked_authors) else int(
row.n_linked_authors)
n_authors = '' if np.isnan(row.n_authors) else int(row.n_authors)
claimed_paper = '' if n_linked_authors == '' else f'{n_linked_authors}/{n_authors} {author_linked}'
row = f'''
{title} |
{row.authors} |
{arxiv} |
{github} |
{hf_paper} |
{hf_space} |
{hf_model} |
{hf_dataset} |
{claimed_paper} |
'''
rows.append(row)
self.table['html_table_content'] = rows
def render(self, search_query: str, case_sensitive: bool,
filter_names: list[str]) -> tuple[str, str]:
df = self.table
if search_query:
if case_sensitive:
df = df[df.title.str.contains(search_query)]
else:
df = df[df.title_lowercase.str.contains(search_query.lower())]
has_arxiv = 'arXiv' in filter_names
has_github = 'GitHub' in filter_names
has_hf_space = 'Space' in filter_names
has_hf_model = 'Model' in filter_names
has_hf_dataset = 'Dataset' in filter_names
df = self.filter_table(df, has_arxiv, has_github, has_hf_space,
has_hf_model, has_hf_dataset)
n_claimed = len(df[df.n_linked_authors > 0])
return f'{len(df)} ({n_claimed} claimed)', self.to_html(
df, self.table_header)
@staticmethod
def filter_table(df: pd.DataFrame, has_arxiv: bool, has_github: bool,
has_hf_space: bool, has_hf_model: bool,
has_hf_dataset: bool) -> pd.DataFrame:
if has_arxiv:
df = df[~df.arxiv.isna()]
if has_github:
df = df[~df.github.isna()]
if has_hf_space:
df = df[~df.hf_space.isna()]
if has_hf_model:
df = df[~df.hf_model.isna()]
if has_hf_dataset:
df = df[~df.hf_dataset.isna()]
return df
@staticmethod
def to_html(df: pd.DataFrame, table_header: str) -> str:
table_data = ''.join(df.html_table_content)
html = f'''
{table_header}
{table_data}
'''
return html