from transformers import pipeline import gradio as gr import time from video_downloader import download_video from moviepy.editor import AudioFileClip import datetime import os from pydub import AudioSegment from pydub.silence import split_on_silence pipe = pipeline("automatic-speech-recognition", model="Artanis1551/whisper_romanian3") def process_video(date, update_fn): # Download the video video_path = download_video(date) # Update the output with the video update_fn(video=video_path) # Extract audio from the video audio_path = f"audio_{date}.wav" AudioFileClip(video_path).write_audiofile(audio_path) # Split the audio into chunks audio = AudioSegment.from_wav(audio_path) chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-40) # Transcribe each chunk transcription = "" for i, chunk in enumerate(chunks): chunk.export(f"chunk{i}.wav", format="wav") with open(f"chunk{i}.wav", "rb") as audio_file: audio = audio_file.read() transcription += pipe(audio)["text"] + " " os.remove(f"chunk{i}.wav") # Update the output with the transcription update_fn(transcription=transcription) # Remove the audio file os.remove(audio_path) return video_path, transcription iface = gr.Interface( fn=process_video, inputs=gr.inputs.Textbox(label="Date with format YYYYMMDD"), outputs=[ gr.outputs.Video(), gr.Textbox(lines=1000, max_lines=1000, interactive=True), ], live=True, title="Romanian Transcription Test", ) iface.launch()