from transformers import pipeline import gradio as gr import time from video_downloader import download_video, download_video1 from moviepy.editor import AudioFileClip from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip import datetime import os from pydub import AudioSegment from pydub.silence import split_on_silence pipe = pipeline("automatic-speech-recognition", model="Artanis1551/whisper_swedish") def process_video1(date): video_path = download_video1(date) # Extract audio from the video audio_path = f"audio_{date}.wav" AudioFileClip(video_path).write_audiofile(audio_path) # Split the audio into chunks audio = AudioSegment.from_wav(audio_path) chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-40) # Transcribe each chunk transcription = "" for i, chunk in enumerate(chunks): chunk.export(f"chunk{i}.wav", format="wav") with open(f"chunk{i}.wav", "rb") as audio_file: audio = audio_file.read() transcription += pipe(audio)["text"] + "\n " os.remove(f"chunk{i}.wav") # Remove the audio file os.remove(audio_path) return video_path, transcription iface = gr.Interface( fn=process_video1, inputs=[ gr.inputs.Textbox(label="Date with format YYYY-MM-DD"), ], outputs=[ gr.outputs.Video(), gr.Textbox(lines=1000, max_lines=1000, interactive=True), ], title="Transcribe Swedish Parliament Decisions", desription="This app transcribes the top Swedish Parliament decision video from the given date.", ) def process_video(date): # Download the video video_path = download_video(date) # Extract the first 30 seconds of the video short_video_path = f"short_{date}.mp4" ffmpeg_extract_subclip(video_path, 0, 30, targetname=short_video_path) # Extract audio from the short video audio_path = f"audio_{date}.wav" AudioFileClip(short_video_path).write_audiofile(audio_path) # Split the audio into chunks audio = AudioSegment.from_wav(audio_path) chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-40) # Transcribe each chunk transcription = "" for i, chunk in enumerate(chunks): chunk.export(f"chunk{i}.wav", format="wav") with open(f"chunk{i}.wav", "rb") as audio_file: audio = audio_file.read() transcription += pipe(audio)["text"] + " " os.remove(f"chunk{i}.wav") # Remove the audio file os.remove(audio_path) return short_video_path, transcription # iface = gr.Interface( # fn=process_video, # inputs=gr.inputs.Textbox(label="Date with format YYYYMMDD"), # outputs=[ # gr.outputs.Video(), # gr.Textbox(lines=1000, max_lines=1000, interactive=True), # ], # title="Romanian Transcription Test", # ) iface.launch()