Spaces:
Runtime error
Runtime error
指定BNB_CUDA_VERSION in bitsandbytes
Browse files
app.py
CHANGED
@@ -2,5 +2,6 @@ import os
|
|
2 |
|
3 |
os.system(
|
4 |
f"git clone https://github.com/TimDettmers/bitsandbytes.git /home/user/app/bitsandbytes")
|
|
|
5 |
os.system(f"cd /home/user/app/bitsandbytes && CUDA_VERSION=113 make cuda11x && python setup.py install")
|
6 |
os.system(f"python /home/user/app/launch.py")
|
|
|
2 |
|
3 |
os.system(
|
4 |
f"git clone https://github.com/TimDettmers/bitsandbytes.git /home/user/app/bitsandbytes")
|
5 |
+
os.system(f"export BNB_CUDA_VERSION=113")
|
6 |
os.system(f"cd /home/user/app/bitsandbytes && CUDA_VERSION=113 make cuda11x && python setup.py install")
|
7 |
os.system(f"python /home/user/app/launch.py")
|
launch.py
CHANGED
@@ -28,6 +28,7 @@ def is_chinese(text):
|
|
28 |
AUTH_TOKEN = os.getenv("AUTH_TOKEN")
|
29 |
|
30 |
LM_MODEL_PATH = "wuxiaojun/Ziya-LLaMA-13B-v1"
|
|
|
31 |
lm_model = LlamaForCausalLM.from_pretrained(
|
32 |
LM_MODEL_PATH,
|
33 |
device_map="auto",
|
@@ -36,6 +37,7 @@ lm_model = LlamaForCausalLM.from_pretrained(
|
|
36 |
quantization_config=BitsAndBytesConfig(load_in_4bit=True))
|
37 |
|
38 |
TOKENIZER_PATH = "IDEA-CCNL/Ziya-LLaMA-13B-v1"
|
|
|
39 |
# tokenizer = LlamaTokenizer.from_pretrained(LM_MODEL_PATH, use_auth_token=AUTH_TOKEN)
|
40 |
tokenizer = LlamaTokenizer.from_pretrained(TOKENIZER_PATH)
|
41 |
|
@@ -43,8 +45,10 @@ tokenizer = LlamaTokenizer.from_pretrained(TOKENIZER_PATH)
|
|
43 |
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
|
44 |
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
|
45 |
# demo.py is in the project path, so we can use local path ".". Otherwise you should use "IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1"
|
|
|
|
|
46 |
model = AutoModelForCausalLM.from_pretrained(
|
47 |
-
|
48 |
trust_remote_code=True, use_auth_token=AUTH_TOKEN,
|
49 |
torch_dtype=torch.float16)
|
50 |
model.cuda() # if you use on cpu, comment this line
|
|
|
28 |
AUTH_TOKEN = os.getenv("AUTH_TOKEN")
|
29 |
|
30 |
LM_MODEL_PATH = "wuxiaojun/Ziya-LLaMA-13B-v1"
|
31 |
+
# LM_MODEL_PATH = "/cognitive_comp/wuxiaojun/pretrained/pytorch/huggingface/Ziya-LLaMA-13B-v1"
|
32 |
lm_model = LlamaForCausalLM.from_pretrained(
|
33 |
LM_MODEL_PATH,
|
34 |
device_map="auto",
|
|
|
37 |
quantization_config=BitsAndBytesConfig(load_in_4bit=True))
|
38 |
|
39 |
TOKENIZER_PATH = "IDEA-CCNL/Ziya-LLaMA-13B-v1"
|
40 |
+
# TOKENIZER_PATH = "/cognitive_comp/wuxiaojun/pretrained/pytorch/huggingface/Ziya-LLaMA-13B-v1"
|
41 |
# tokenizer = LlamaTokenizer.from_pretrained(LM_MODEL_PATH, use_auth_token=AUTH_TOKEN)
|
42 |
tokenizer = LlamaTokenizer.from_pretrained(TOKENIZER_PATH)
|
43 |
|
|
|
45 |
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
|
46 |
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
|
47 |
# demo.py is in the project path, so we can use local path ".". Otherwise you should use "IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1"
|
48 |
+
visual_model_path = "IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1"
|
49 |
+
# visual_model_path = "/cognitive_comp/wuxiaojun/pretrained/pytorch/huggingface/Ziya-BLIP2-14B-Visual-v1"
|
50 |
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
visual_model_path,
|
52 |
trust_remote_code=True, use_auth_token=AUTH_TOKEN,
|
53 |
torch_dtype=torch.float16)
|
54 |
model.cuda() # if you use on cpu, comment this line
|