File size: 1,172 Bytes
d0eea62
5d9a7ee
0c02385
e5b0c87
014c294
102b45f
f88264c
 
014c294
5fe72be
e26352f
c4b957a
 
302eb17
e06a3df
014c294
 
6fd1262
014c294
5cfd1ca
014c294
 
e08cc47
48decfb
6fd1262
014c294
 
 
48decfb
6fd1262
014c294
e06a3df
014c294
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
import numpy as np
import torch
from huggingsound import SpeechRecognitionModel
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import pipeline

# Función para convertir la tasa de muestreo del audio de entrada
def modelo1(audio):
    print(audio)
    whisper = pipeline('automatic-speech-recognition', model='openai/whisper-medium', device=-1)  # Cambia 'device' a -1 para usar la CPU
    print(np.array(audio[1]))
    text = whisper(np.array(audio[1]))
    print(text["text"])
    return text["text"]
def modelo2(text):
    model_id = "stabilityai/stable-diffusion-2-1"

    # Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead
    pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
    pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    image = pipe(text).images[0]

    return image

def execution(audio):
    modelo1res = modelo1(audio)
    modelo2res = modelo2(modelo1res)
    return modelo2res

if __name__ == "__main__":
    demo = gr.Interface(fn=execution, inputs="audio", outputs="image")
    demo.launch()