import gradio as gr from huggingsound import SpeechRecognitionModel from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler from transformers import pipeline # FunciĆ³n para convertir la tasa de muestreo del audio de entrada def modelo1(audio): # Convertir la tasa de muestreo del audio whisper = pipeline('automatic-speech-recognition', model = 'openai/whisper-medium', device = 0) text = whisper(audio) return text def modelo2(text): model_id = "stabilityai/stable-diffusion-2-1" # Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") image = pipe(text).images[0] return image def execution(audio): modelo1res = modelo1(audio) modelo2res = modelo2(modelo1res) return modelo2res if __name__ == "__main__": demo = gr.Interface(fn=execution, inputs="audio", outputs="image") demo.launch()