import gradio as gr import torch from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler def modelo1(audio): return gr.Interface.load("models/jonatasgrosman/wav2vec2-large-xlsr-53-english") def modelo2(text): model_id = "stabilityai/stable-diffusion-2-1" # Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") image = pipe(text).images[0] def execution(audio): modelo1res = modelo1(audio) modelo2res = modelo2(modelo1res) return modelo1res if __name__ == "__main__": demo.launch()