import gradio as gr import numpy as np import torch from huggingsound import SpeechRecognitionModel from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler from transformers import pipeline # Función para convertir la tasa de muestreo del audio de entrada def modelo1(audio): print(audio) whisper = pipeline('automatic-speech-recognition', model='openai/whisper-medium', device=-1) # Cambia 'device' a -1 para usar la CPU print(np.array(audio[1])) text = whisper(np.array(audio[1])) print(text["text"]) return text["text"] def modelo2(text): model_id = "stabilityai/stable-diffusion-2-1" # Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cpu") print(text) # Conversión a float32 image = pipe(text).images[0] return image def execution(audio): modelo1res = modelo1(audio) modelo2res = modelo2(modelo1res) return modelo2res if __name__ == "__main__": demo = gr.Interface(fn=execution, inputs="audio", outputs="image") demo.launch()