Illia56's picture
Update app.py
832942a verified
import gradio as gr
import os
from gradio_client import Client
def transcribe_audio(youtube_url: str, task: str = "transcribe", return_timestamps: bool = False, api_name: str = "/predict_2") -> dict:
"""
Transcribe audio from a given YouTube URL using a specified model.
Parameters:
- youtube_url (str): The YouTube URL to transcribe.
- task (str, optional): The task to perform. Default is "transcribe".
- return_timestamps (bool, optional): Whether to return timestamps. Default is True.
- api_name (str, optional): The API endpoint to use. Default is "/predict_2".
Returns:
- dict: The transcription result.
"""
client = Client("https://sanchit-gandhi-whisper-jax.hf.space/")
result = client.predict(youtube_url, task, return_timestamps, fn_index=7)
return result
MODEL_NAME = "openai/whisper-large-v3"
demo = gr.Blocks()
EXAMPLES = [
["https://www.youtube.com/watch?v=H1YoNlz2LxA", "translate",False],
]
yt_transcribe = gr.Interface(
fn=transcribe_audio,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
gr.Checkbox(label="Return timestamps")
],
outputs=[gr.HTML(label="Video"),
gr.Textbox(label="Transcription").style(show_copy_button=True)],
layout="horizontal",
theme=gr.themes.Base(),
title="Whisper Large V2: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
examples=EXAMPLES,
cache_examples=False
)
with demo:
gr.DuplicateButton()
gr.TabbedInterface([yt_transcribe], [ "YouTube"])
demo.launch(enable_queue=True)