File size: 8,058 Bytes
facdd69
bc87def
facdd69
 
 
 
bc87def
 
21053fe
bc87def
 
facdd69
bc87def
facdd69
bc87def
 
 
21053fe
facdd69
bc87def
facdd69
 
 
 
 
 
 
 
 
 
 
 
 
 
bc87def
 
 
05ca5ab
 
 
 
bc87def
facdd69
bc87def
facdd69
 
bc87def
 
 
05ca5ab
 
 
 
bc87def
facdd69
bc87def
facdd69
 
bc87def
facdd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc87def
 
facdd69
bc87def
05ca5ab
 
 
 
bc87def
facdd69
bc87def
facdd69
 
bc87def
 
facdd69
 
 
 
 
 
 
 
 
 
 
 
 
 
bc87def
facdd69
 
 
 
 
 
 
 
 
bc87def
facdd69
 
 
 
 
 
bc87def
facdd69
 
 
 
 
bc87def
 
 
 
facdd69
 
 
 
 
 
 
 
 
 
 
bc87def
 
facdd69
 
bc87def
facdd69
 
 
 
bc87def
facdd69
 
bc87def
 
 
 
 
 
 
 
 
 
 
 
 
 
facdd69
 
bc87def
 
 
 
 
 
 
 
 
 
 
 
 
facdd69
 
 
bc87def
facdd69
 
 
 
 
 
 
 
 
21053fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
from openai import OpenAI
from youtube_transcript_api import YouTubeTranscriptApi
import re
import tempfile
import os
from transformers import pipeline
import soundfile as sf

# Initialize the pipeline with the model
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-small")

# Function to transcribe audio using Hugging Face Whisper
def transcribe_audio(file_path):
    # Load audio file into NumPy array
    audio_input, _ = sf.read(file_path)
    transcription = pipe(audio_input)["text"]
    return transcription

# Function to get YouTube transcript
def get_transcript(url):
    try:
        video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11}).*", url)
        if video_id_match:
            video_id = video_id_match.group(1)
        else:
            return "Error: Invalid YouTube URL"

        transcript = YouTubeTranscriptApi.get_transcript(video_id)
        transcript_text = ' '.join([entry['text'] for entry in transcript])
        return transcript_text
    except Exception as e:
        return str(e)

# Function to summarize text using OpenAI API
def summarize_text(client, text):
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f"Summarize the following text:\n\n{text}"}
        ]
    )
    summary = response.choices[0].message.content.strip()
    return summary

# Function to generate quiz questions using OpenAI API
def generate_quiz_questions(client, text):
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": f"Generate ten quiz questions and four multiple choice answers for each question from the following text. Mark the correct answer with an asterisk (*) at the beginning:\n\n{text}"}
        ]
    )
    quiz_questions = response.choices[0].message.content.strip()
    return quiz_questions

# Function to parse quiz questions
def parse_quiz_questions(quiz_text):
    questions = []
    question_blocks = quiz_text.split("\n\n")
    for block in question_blocks:
        lines = block.strip().split("\n")
        if len(lines) >= 5:
            question = lines[0]
            choices = [line.replace('*', '').strip() for line in lines[1:5]]
            correct_answer_lines = [line for line in lines[1:5] if '*' in line]
            if correct_answer_lines:
                correct_answer = correct_answer_lines[0].replace('*', '').strip()
            else:
                correct_answer = "No correct answer provided"
            questions.append({"question": question, "choices": choices, "correct_answer": correct_answer})
    return questions

# Function to generate explanation using OpenAI API
def generate_explanation(client, question, correct_answer, user_answer):
    prompt = f"Explain why the correct answer to the following question is '{correct_answer}' and not '{user_answer}':\n\n{question}"
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": prompt}
        ]
    )
    explanation = response.choices[0].message.content.strip()
    return explanation

# Function to check answers and provide feedback
def check_answers(client, questions, user_answers):
    feedback = []
    correct_count = 0
    for i, question in enumerate(questions):
        correct_answer = question['correct_answer']
        user_answer = user_answers.get(f"question_{i+1}", "")
        if user_answer == correct_answer:
            feedback.append({
                "question": question['question'],
                "user_answer": user_answer,
                "correct_answer": correct_answer,
                "status": "Correct"
            })
            correct_count += 1
        else:
            explanation = generate_explanation(client, question['question'], correct_answer, user_answer)
            feedback.append({
                "question": question['question'],
                "user_answer": user_answer,
                "correct_answer": correct_answer,
                "status": "Incorrect",
                "explanation": explanation
            })
    return feedback

# Function to handle uploaded file
def handle_uploaded_file(uploaded_file):
    with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
        tmp_file.write(uploaded_file.read())
        tmp_file_path = tmp_file.name
    return tmp_file_path

# Streamlit UI
st.title("YouTube Transcript Quiz Generator")

st.markdown("**Instructions:** Enter your OpenAI API key and paste a YouTube link or upload a media file to generate a quiz.")

api_key = st.text_input("Enter your OpenAI API Key", type="password")

if api_key:
    client = OpenAI(api_key=api_key)

option = st.selectbox("Choose input type", ("YouTube URL", "Upload audio/video file"))

if "generated_quiz" not in st.session_state:
    st.session_state.generated_quiz = False

if option == "YouTube URL":
    url = st.text_input("YouTube URL", value="")
    if api_key and url:
        if st.button("Generate Quiz"):
            transcript_text = get_transcript(url)
            if "Error" not in transcript_text:
                summary = summarize_text(client, transcript_text)
                quiz_text = generate_quiz_questions(client, transcript_text)
                questions = parse_quiz_questions(quiz_text)

                st.session_state.summary = summary
                st.session_state.questions = questions
                st.session_state.user_answers = {}
                st.session_state.generated_quiz = True

if option == "Upload audio/video file":
    uploaded_file = st.file_uploader("Choose an audio or video file", type=["mp3", "wav", "mp4", "mov"])
    if uploaded_file and api_key:
        if st.button("Generate Quiz"):
            tmp_file_path = handle_uploaded_file(uploaded_file)
            with st.spinner('Transcribing audio...'):
                transcript_text = transcribe_audio(tmp_file_path)
            os.remove(tmp_file_path)
            if "Error" not in transcript_text:
                summary = summarize_text(client, transcript_text)
                quiz_text = generate_quiz_questions(client, transcript_text)
                questions = parse_quiz_questions(quiz_text)

                st.session_state.summary = summary
                st.session_state.questions = questions
                st.session_state.user_answers = {}
                st.session_state.generated_quiz = True

if st.session_state.generated_quiz:
    st.write("## Summary")
    st.write(st.session_state.summary)

    st.write("## Quiz Questions")
    for i, question in enumerate(st.session_state.questions):
        st.write(f"### Question {i+1}")
        st.write(question['question'])
        st.session_state.user_answers[f"question_{i+1}"] = st.radio(
            label="",
            options=question['choices'],
            key=f"question_{i+1}"
        )

    if st.button("Submit Answers"):
        if "questions" in st.session_state and st.session_state.questions:
            with st.spinner('Processing your answers...'):
                feedback = check_answers(client, st.session_state.questions, st.session_state.user_answers)
                st.write("## Feedback")
                for i, item in enumerate(feedback):
                    with st.expander(f"Question {i+1} Feedback"):
                        st.write(f"### {item['question']}")
                        st.write(f"**Your answer:** {item['user_answer']}")
                        st.write(f"**Correct answer:** {item['correct_answer']}")
                        if item['status'] == "Incorrect":
                            st.write(f"**Explanation:** {item['explanation']}")
        else:
            st.write("Please generate the quiz first.")