Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,24 +4,33 @@ import re
|
|
4 |
import tempfile
|
5 |
import os
|
6 |
import warnings
|
7 |
-
import
|
|
|
8 |
from transformers import pipeline
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Suppress specific warning
|
12 |
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
|
13 |
|
14 |
-
# Set up Groq
|
15 |
-
|
16 |
|
17 |
-
#
|
18 |
-
pipeline = FlaxWhisperPipeline("openai/whisper-large-v2")
|
19 |
-
|
20 |
-
# Function to transcribe audio using FlaxWhisperPipeline
|
21 |
def transcribe_audio(file_path):
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
# Function to get transcript from YouTube
|
27 |
def get_transcript(url):
|
@@ -36,30 +45,19 @@ def get_transcript(url):
|
|
36 |
except Exception as e:
|
37 |
return str(e)
|
38 |
|
39 |
-
# Function to make a request to the Groq API
|
40 |
-
def groq_request(payload):
|
41 |
-
headers = {
|
42 |
-
"Authorization": f"Bearer {GROQ_API_KEY}",
|
43 |
-
"Content-Type": "application/json"
|
44 |
-
}
|
45 |
-
response = requests.post("https://api.groq.com/v1/endpoint", json=payload, headers=headers)
|
46 |
-
response.raise_for_status()
|
47 |
-
return response.json()
|
48 |
-
|
49 |
# Function to summarize text using Groq API
|
50 |
def summarize_text(text):
|
51 |
try:
|
52 |
-
|
53 |
-
|
54 |
-
"messages": [
|
55 |
{
|
56 |
"role": "user",
|
57 |
"content": f"Summarize the following text:\n\n{text}"
|
58 |
}
|
59 |
-
]
|
60 |
-
|
61 |
-
|
62 |
-
summary = response
|
63 |
return summary
|
64 |
except Exception as e:
|
65 |
return f"Error summarizing text: {e}"
|
@@ -67,17 +65,16 @@ def summarize_text(text):
|
|
67 |
# Function to generate quiz questions using Groq API
|
68 |
def generate_quiz_questions(text):
|
69 |
try:
|
70 |
-
|
71 |
-
|
72 |
-
"messages": [
|
73 |
{
|
74 |
"role": "user",
|
75 |
"content": f"Generate quiz questions for the following text:\n\n{text}"
|
76 |
}
|
77 |
-
]
|
78 |
-
|
79 |
-
|
80 |
-
quiz_questions = response
|
81 |
return quiz_questions
|
82 |
except Exception as e:
|
83 |
return f"Error generating quiz questions: {e}"
|
@@ -119,17 +116,16 @@ def parse_quiz_questions(quiz_text):
|
|
119 |
# Function to generate explanation for quiz answers using Groq API
|
120 |
def generate_explanation(question, correct_answer, user_answer):
|
121 |
try:
|
122 |
-
|
123 |
-
|
124 |
-
"messages": [
|
125 |
{
|
126 |
"role": "user",
|
127 |
"content": f"Explain why the correct answer to the following question is '{correct_answer}' and not '{user_answer}':\n\n{question}"
|
128 |
}
|
129 |
-
]
|
130 |
-
|
131 |
-
|
132 |
-
explanation = response
|
133 |
return explanation
|
134 |
except Exception as e:
|
135 |
return f"Error generating explanation: {e}"
|
|
|
4 |
import tempfile
|
5 |
import os
|
6 |
import warnings
|
7 |
+
from groq import Groq
|
8 |
+
import torch
|
9 |
from transformers import pipeline
|
10 |
+
|
11 |
+
# Set up device for torch
|
12 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
# Set up ASR pipeline with a smaller model for reduced memory usage
|
15 |
+
asr_pipeline = pipeline(
|
16 |
+
"automatic-speech-recognition",
|
17 |
+
model="openai/whisper-medium",
|
18 |
+
chunk_length_s=30,
|
19 |
+
device=device,
|
20 |
+
)
|
21 |
|
22 |
# Suppress specific warning
|
23 |
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
|
24 |
|
25 |
+
# Set up Groq client
|
26 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
27 |
|
28 |
+
# Function to transcribe audio using ASR pipeline
|
|
|
|
|
|
|
29 |
def transcribe_audio(file_path):
|
30 |
+
with open(file_path, "rb") as f:
|
31 |
+
audio_bytes = f.read()
|
32 |
+
prediction = asr_pipeline(audio_bytes)["text"]
|
33 |
+
return prediction
|
34 |
|
35 |
# Function to get transcript from YouTube
|
36 |
def get_transcript(url):
|
|
|
45 |
except Exception as e:
|
46 |
return str(e)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# Function to summarize text using Groq API
|
49 |
def summarize_text(text):
|
50 |
try:
|
51 |
+
response = client.chat.completions.create(
|
52 |
+
messages=[
|
|
|
53 |
{
|
54 |
"role": "user",
|
55 |
"content": f"Summarize the following text:\n\n{text}"
|
56 |
}
|
57 |
+
],
|
58 |
+
model="llama3-8b-8192",
|
59 |
+
)
|
60 |
+
summary = response.choices[0].message.content.strip()
|
61 |
return summary
|
62 |
except Exception as e:
|
63 |
return f"Error summarizing text: {e}"
|
|
|
65 |
# Function to generate quiz questions using Groq API
|
66 |
def generate_quiz_questions(text):
|
67 |
try:
|
68 |
+
response = client.chat.completions.create(
|
69 |
+
messages=[
|
|
|
70 |
{
|
71 |
"role": "user",
|
72 |
"content": f"Generate quiz questions for the following text:\n\n{text}"
|
73 |
}
|
74 |
+
],
|
75 |
+
model="llama3-8b-8192",
|
76 |
+
)
|
77 |
+
quiz_questions = response.choices[0].message.content.strip()
|
78 |
return quiz_questions
|
79 |
except Exception as e:
|
80 |
return f"Error generating quiz questions: {e}"
|
|
|
116 |
# Function to generate explanation for quiz answers using Groq API
|
117 |
def generate_explanation(question, correct_answer, user_answer):
|
118 |
try:
|
119 |
+
response = client.chat.completions.create(
|
120 |
+
messages=[
|
|
|
121 |
{
|
122 |
"role": "user",
|
123 |
"content": f"Explain why the correct answer to the following question is '{correct_answer}' and not '{user_answer}':\n\n{question}"
|
124 |
}
|
125 |
+
],
|
126 |
+
model="llama3-8b-8192",
|
127 |
+
)
|
128 |
+
explanation = response.choices[0].message.content.strip()
|
129 |
return explanation
|
130 |
except Exception as e:
|
131 |
return f"Error generating explanation: {e}"
|