Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,23 @@
|
|
1 |
-
import openai
|
2 |
import streamlit as st
|
|
|
3 |
from youtube_transcript_api import YouTubeTranscriptApi
|
4 |
import re
|
5 |
import tempfile
|
6 |
import os
|
7 |
-
from transformers import
|
8 |
-
import
|
9 |
-
import librosa
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
14 |
|
|
|
15 |
def transcribe_audio(file_path):
|
16 |
-
# Load audio file
|
17 |
-
|
18 |
-
|
19 |
-
# Tokenize the audio
|
20 |
-
inputs = processor(audio, return_tensors="pt", sampling_rate=16000)
|
21 |
-
|
22 |
-
# Perform the transcription
|
23 |
-
with torch.no_grad():
|
24 |
-
generated_ids = model.generate(inputs["input_features"])
|
25 |
-
|
26 |
-
# Decode the transcription
|
27 |
-
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
28 |
return transcription
|
29 |
|
|
|
30 |
def get_transcript(url):
|
31 |
try:
|
32 |
video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11}).*", url)
|
@@ -41,32 +32,31 @@ def get_transcript(url):
|
|
41 |
except Exception as e:
|
42 |
return str(e)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
response =
|
47 |
model="gpt-3.5-turbo",
|
48 |
messages=[
|
49 |
{"role": "system", "content": "You are a helpful assistant."},
|
50 |
{"role": "user", "content": f"Summarize the following text:\n\n{text}"}
|
51 |
-
]
|
52 |
-
max_tokens=150
|
53 |
)
|
54 |
-
summary = response.choices[0]
|
55 |
return summary
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
response =
|
60 |
model="gpt-3.5-turbo",
|
61 |
messages=[
|
62 |
{"role": "system", "content": "You are a helpful assistant."},
|
63 |
{"role": "user", "content": f"Generate ten quiz questions and four multiple choice answers for each question from the following text. Mark the correct answer with an asterisk (*) at the beginning:\n\n{text}"}
|
64 |
-
]
|
65 |
-
max_tokens=300
|
66 |
)
|
67 |
-
quiz_questions = response.choices[0]
|
68 |
return quiz_questions
|
69 |
|
|
|
70 |
def parse_quiz_questions(quiz_text):
|
71 |
questions = []
|
72 |
question_blocks = quiz_text.split("\n\n")
|
@@ -83,21 +73,21 @@ def parse_quiz_questions(quiz_text):
|
|
83 |
questions.append({"question": question, "choices": choices, "correct_answer": correct_answer})
|
84 |
return questions
|
85 |
|
86 |
-
|
87 |
-
|
88 |
prompt = f"Explain why the correct answer to the following question is '{correct_answer}' and not '{user_answer}':\n\n{question}"
|
89 |
-
response =
|
90 |
model="gpt-3.5-turbo",
|
91 |
messages=[
|
92 |
{"role": "system", "content": "You are a helpful assistant."},
|
93 |
{"role": "user", "content": prompt}
|
94 |
-
]
|
95 |
-
max_tokens=150
|
96 |
)
|
97 |
-
explanation = response.choices[0]
|
98 |
return explanation
|
99 |
|
100 |
-
|
|
|
101 |
feedback = []
|
102 |
correct_count = 0
|
103 |
for i, question in enumerate(questions):
|
@@ -112,7 +102,7 @@ def check_answers(api_key, questions, user_answers):
|
|
112 |
})
|
113 |
correct_count += 1
|
114 |
else:
|
115 |
-
explanation = generate_explanation(
|
116 |
feedback.append({
|
117 |
"question": question['question'],
|
118 |
"user_answer": user_answer,
|
@@ -122,17 +112,23 @@ def check_answers(api_key, questions, user_answers):
|
|
122 |
})
|
123 |
return feedback
|
124 |
|
|
|
125 |
def handle_uploaded_file(uploaded_file):
|
126 |
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
127 |
tmp_file.write(uploaded_file.read())
|
128 |
tmp_file_path = tmp_file.name
|
129 |
return tmp_file_path
|
130 |
|
|
|
131 |
st.title("YouTube Transcript Quiz Generator")
|
132 |
|
133 |
st.markdown("**Instructions:** Enter your OpenAI API key and paste a YouTube link or upload a media file to generate a quiz.")
|
134 |
|
135 |
api_key = st.text_input("Enter your OpenAI API Key", type="password")
|
|
|
|
|
|
|
|
|
136 |
option = st.selectbox("Choose input type", ("YouTube URL", "Upload audio/video file"))
|
137 |
|
138 |
if "generated_quiz" not in st.session_state:
|
@@ -144,60 +140,51 @@ if option == "YouTube URL":
|
|
144 |
if st.button("Generate Quiz"):
|
145 |
transcript_text = get_transcript(url)
|
146 |
if "Error" not in transcript_text:
|
147 |
-
summary = summarize_text(
|
148 |
-
quiz_text = generate_quiz_questions(
|
149 |
questions = parse_quiz_questions(quiz_text)
|
150 |
|
151 |
-
st.
|
152 |
-
st.write(summary)
|
153 |
-
|
154 |
-
st.write("## Quiz Questions")
|
155 |
st.session_state.questions = questions
|
156 |
st.session_state.user_answers = {}
|
157 |
st.session_state.generated_quiz = True
|
158 |
|
159 |
-
|
160 |
-
st.write(f"### Question {i+1}")
|
161 |
-
st.write(question['question'])
|
162 |
-
st.session_state.user_answers[f"question_{i+1}"] = st.radio(
|
163 |
-
label="",
|
164 |
-
options=question['choices'],
|
165 |
-
key=f"question_{i+1}"
|
166 |
-
)
|
167 |
-
|
168 |
-
elif option == "Upload audio/video file":
|
169 |
uploaded_file = st.file_uploader("Choose an audio or video file", type=["mp3", "wav", "mp4", "mov"])
|
170 |
if uploaded_file and api_key:
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
st.session_state.generated_quiz = True
|
186 |
-
|
187 |
-
for i, question in enumerate(questions):
|
188 |
-
st.write(f"### Question {i+1}")
|
189 |
-
st.write(question['question'])
|
190 |
-
st.session_state.user_answers[f"question_{i+1}"] = st.radio(
|
191 |
-
label="",
|
192 |
-
options=question['choices'],
|
193 |
-
key=f"question_{i+1}"
|
194 |
-
)
|
195 |
|
196 |
if st.session_state.generated_quiz:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
if st.button("Submit Answers"):
|
198 |
if "questions" in st.session_state and st.session_state.questions:
|
199 |
with st.spinner('Processing your answers...'):
|
200 |
-
feedback = check_answers(
|
201 |
st.write("## Feedback")
|
202 |
for i, item in enumerate(feedback):
|
203 |
with st.expander(f"Question {i+1} Feedback"):
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from openai import OpenAI
|
3 |
from youtube_transcript_api import YouTubeTranscriptApi
|
4 |
import re
|
5 |
import tempfile
|
6 |
import os
|
7 |
+
from transformers import pipeline
|
8 |
+
import soundfile as sf
|
|
|
9 |
|
10 |
+
# Initialize the pipeline with the model
|
11 |
+
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
|
|
12 |
|
13 |
+
# Function to transcribe audio using Hugging Face Whisper
|
14 |
def transcribe_audio(file_path):
|
15 |
+
# Load audio file into NumPy array
|
16 |
+
audio_input, _ = sf.read(file_path)
|
17 |
+
transcription = pipe(audio_input)["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
return transcription
|
19 |
|
20 |
+
# Function to get YouTube transcript
|
21 |
def get_transcript(url):
|
22 |
try:
|
23 |
video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11}).*", url)
|
|
|
32 |
except Exception as e:
|
33 |
return str(e)
|
34 |
|
35 |
+
# Function to summarize text using OpenAI API
|
36 |
+
def summarize_text(client, text):
|
37 |
+
response = client.chat.completions.create(
|
38 |
model="gpt-3.5-turbo",
|
39 |
messages=[
|
40 |
{"role": "system", "content": "You are a helpful assistant."},
|
41 |
{"role": "user", "content": f"Summarize the following text:\n\n{text}"}
|
42 |
+
]
|
|
|
43 |
)
|
44 |
+
summary = response.choices[0].message.content.strip()
|
45 |
return summary
|
46 |
|
47 |
+
# Function to generate quiz questions using OpenAI API
|
48 |
+
def generate_quiz_questions(client, text):
|
49 |
+
response = client.chat.completions.create(
|
50 |
model="gpt-3.5-turbo",
|
51 |
messages=[
|
52 |
{"role": "system", "content": "You are a helpful assistant."},
|
53 |
{"role": "user", "content": f"Generate ten quiz questions and four multiple choice answers for each question from the following text. Mark the correct answer with an asterisk (*) at the beginning:\n\n{text}"}
|
54 |
+
]
|
|
|
55 |
)
|
56 |
+
quiz_questions = response.choices[0].message.content.strip()
|
57 |
return quiz_questions
|
58 |
|
59 |
+
# Function to parse quiz questions
|
60 |
def parse_quiz_questions(quiz_text):
|
61 |
questions = []
|
62 |
question_blocks = quiz_text.split("\n\n")
|
|
|
73 |
questions.append({"question": question, "choices": choices, "correct_answer": correct_answer})
|
74 |
return questions
|
75 |
|
76 |
+
# Function to generate explanation using OpenAI API
|
77 |
+
def generate_explanation(client, question, correct_answer, user_answer):
|
78 |
prompt = f"Explain why the correct answer to the following question is '{correct_answer}' and not '{user_answer}':\n\n{question}"
|
79 |
+
response = client.chat.completions.create(
|
80 |
model="gpt-3.5-turbo",
|
81 |
messages=[
|
82 |
{"role": "system", "content": "You are a helpful assistant."},
|
83 |
{"role": "user", "content": prompt}
|
84 |
+
]
|
|
|
85 |
)
|
86 |
+
explanation = response.choices[0].message.content.strip()
|
87 |
return explanation
|
88 |
|
89 |
+
# Function to check answers and provide feedback
|
90 |
+
def check_answers(client, questions, user_answers):
|
91 |
feedback = []
|
92 |
correct_count = 0
|
93 |
for i, question in enumerate(questions):
|
|
|
102 |
})
|
103 |
correct_count += 1
|
104 |
else:
|
105 |
+
explanation = generate_explanation(client, question['question'], correct_answer, user_answer)
|
106 |
feedback.append({
|
107 |
"question": question['question'],
|
108 |
"user_answer": user_answer,
|
|
|
112 |
})
|
113 |
return feedback
|
114 |
|
115 |
+
# Function to handle uploaded file
|
116 |
def handle_uploaded_file(uploaded_file):
|
117 |
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
118 |
tmp_file.write(uploaded_file.read())
|
119 |
tmp_file_path = tmp_file.name
|
120 |
return tmp_file_path
|
121 |
|
122 |
+
# Streamlit UI
|
123 |
st.title("YouTube Transcript Quiz Generator")
|
124 |
|
125 |
st.markdown("**Instructions:** Enter your OpenAI API key and paste a YouTube link or upload a media file to generate a quiz.")
|
126 |
|
127 |
api_key = st.text_input("Enter your OpenAI API Key", type="password")
|
128 |
+
|
129 |
+
if api_key:
|
130 |
+
client = OpenAI(api_key=api_key)
|
131 |
+
|
132 |
option = st.selectbox("Choose input type", ("YouTube URL", "Upload audio/video file"))
|
133 |
|
134 |
if "generated_quiz" not in st.session_state:
|
|
|
140 |
if st.button("Generate Quiz"):
|
141 |
transcript_text = get_transcript(url)
|
142 |
if "Error" not in transcript_text:
|
143 |
+
summary = summarize_text(client, transcript_text)
|
144 |
+
quiz_text = generate_quiz_questions(client, transcript_text)
|
145 |
questions = parse_quiz_questions(quiz_text)
|
146 |
|
147 |
+
st.session_state.summary = summary
|
|
|
|
|
|
|
148 |
st.session_state.questions = questions
|
149 |
st.session_state.user_answers = {}
|
150 |
st.session_state.generated_quiz = True
|
151 |
|
152 |
+
if option == "Upload audio/video file":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
uploaded_file = st.file_uploader("Choose an audio or video file", type=["mp3", "wav", "mp4", "mov"])
|
154 |
if uploaded_file and api_key:
|
155 |
+
if st.button("Generate Quiz"):
|
156 |
+
tmp_file_path = handle_uploaded_file(uploaded_file)
|
157 |
+
with st.spinner('Transcribing audio...'):
|
158 |
+
transcript_text = transcribe_audio(tmp_file_path)
|
159 |
+
os.remove(tmp_file_path)
|
160 |
+
if "Error" not in transcript_text:
|
161 |
+
summary = summarize_text(client, transcript_text)
|
162 |
+
quiz_text = generate_quiz_questions(client, transcript_text)
|
163 |
+
questions = parse_quiz_questions(quiz_text)
|
164 |
+
|
165 |
+
st.session_state.summary = summary
|
166 |
+
st.session_state.questions = questions
|
167 |
+
st.session_state.user_answers = {}
|
168 |
+
st.session_state.generated_quiz = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
if st.session_state.generated_quiz:
|
171 |
+
st.write("## Summary")
|
172 |
+
st.write(st.session_state.summary)
|
173 |
+
|
174 |
+
st.write("## Quiz Questions")
|
175 |
+
for i, question in enumerate(st.session_state.questions):
|
176 |
+
st.write(f"### Question {i+1}")
|
177 |
+
st.write(question['question'])
|
178 |
+
st.session_state.user_answers[f"question_{i+1}"] = st.radio(
|
179 |
+
label="",
|
180 |
+
options=question['choices'],
|
181 |
+
key=f"question_{i+1}"
|
182 |
+
)
|
183 |
+
|
184 |
if st.button("Submit Answers"):
|
185 |
if "questions" in st.session_state and st.session_state.questions:
|
186 |
with st.spinner('Processing your answers...'):
|
187 |
+
feedback = check_answers(client, st.session_state.questions, st.session_state.user_answers)
|
188 |
st.write("## Feedback")
|
189 |
for i, item in enumerate(feedback):
|
190 |
with st.expander(f"Question {i+1} Feedback"):
|