import streamlit as st from openai import OpenAI from youtube_transcript_api import YouTubeTranscriptApi import re import tempfile import os from transformers import pipeline import soundfile as sf # Initialize the pipeline with the model pipe = pipeline("automatic-speech-recognition", model="openai/whisper-small") # Function to transcribe audio using Hugging Face Whisper def transcribe_audio(file_path): # Load audio file into NumPy array audio_input, _ = sf.read(file_path) transcription = pipe(audio_input)["text"] return transcription # Function to get YouTube transcript def get_transcript(url): try: video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11}).*", url) if video_id_match: video_id = video_id_match.group(1) else: return "Error: Invalid YouTube URL" transcript = YouTubeTranscriptApi.get_transcript(video_id) transcript_text = ' '.join([entry['text'] for entry in transcript]) return transcript_text except Exception as e: return str(e) # Function to summarize text using OpenAI API def summarize_text(client, text): response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": f"Summarize the following text:\n\n{text}"} ] ) summary = response.choices[0].message.content.strip() return summary # Function to generate quiz questions using OpenAI API def generate_quiz_questions(client, text): response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": f"Generate ten quiz questions and four multiple choice answers for each question from the following text. Mark the correct answer with an asterisk (*) at the beginning:\n\n{text}"} ] ) quiz_questions = response.choices[0].message.content.strip() return quiz_questions # Function to parse quiz questions def parse_quiz_questions(quiz_text): questions = [] question_blocks = quiz_text.split("\n\n") for block in question_blocks: lines = block.strip().split("\n") if len(lines) >= 5: question = lines[0] choices = [line.replace('*', '').strip() for line in lines[1:5]] correct_answer_lines = [line for line in lines[1:5] if '*' in line] if correct_answer_lines: correct_answer = correct_answer_lines[0].replace('*', '').strip() else: correct_answer = "No correct answer provided" questions.append({"question": question, "choices": choices, "correct_answer": correct_answer}) return questions # Function to generate explanation using OpenAI API def generate_explanation(client, question, correct_answer, user_answer): prompt = f"Explain why the correct answer to the following question is '{correct_answer}' and not '{user_answer}':\n\n{question}" response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] ) explanation = response.choices[0].message.content.strip() return explanation # Function to check answers and provide feedback def check_answers(client, questions, user_answers): feedback = [] correct_count = 0 for i, question in enumerate(questions): correct_answer = question['correct_answer'] user_answer = user_answers.get(f"question_{i+1}", "") if user_answer == correct_answer: feedback.append({ "question": question['question'], "user_answer": user_answer, "correct_answer": correct_answer, "status": "Correct" }) correct_count += 1 else: explanation = generate_explanation(client, question['question'], correct_answer, user_answer) feedback.append({ "question": question['question'], "user_answer": user_answer, "correct_answer": correct_answer, "status": "Incorrect", "explanation": explanation }) return feedback # Function to handle uploaded file def handle_uploaded_file(uploaded_file): with tempfile.NamedTemporaryFile(delete=False) as tmp_file: tmp_file.write(uploaded_file.read()) tmp_file_path = tmp_file.name return tmp_file_path # Streamlit UI st.title("YouTube Transcript Quiz Generator") st.markdown("**Instructions:** Enter your OpenAI API key and paste a YouTube link or upload a media file to generate a quiz.") api_key = st.text_input("Enter your OpenAI API Key", type="password") if api_key: client = OpenAI(api_key=api_key) option = st.selectbox("Choose input type", ("YouTube URL", "Upload audio/video file")) if "generated_quiz" not in st.session_state: st.session_state.generated_quiz = False if option == "YouTube URL": url = st.text_input("YouTube URL", value="") if api_key and url: if st.button("Generate Quiz"): transcript_text = get_transcript(url) if "Error" not in transcript_text: summary = summarize_text(client, transcript_text) quiz_text = generate_quiz_questions(client, transcript_text) questions = parse_quiz_questions(quiz_text) st.session_state.summary = summary st.session_state.questions = questions st.session_state.user_answers = {} st.session_state.generated_quiz = True if option == "Upload audio/video file": uploaded_file = st.file_uploader("Choose an audio or video file", type=["mp3", "wav", "mp4", "mov"]) if uploaded_file and api_key: if st.button("Generate Quiz"): tmp_file_path = handle_uploaded_file(uploaded_file) with st.spinner('Transcribing audio...'): transcript_text = transcribe_audio(tmp_file_path) os.remove(tmp_file_path) if "Error" not in transcript_text: summary = summarize_text(client, transcript_text) quiz_text = generate_quiz_questions(client, transcript_text) questions = parse_quiz_questions(quiz_text) st.session_state.summary = summary st.session_state.questions = questions st.session_state.user_answers = {} st.session_state.generated_quiz = True if st.session_state.generated_quiz: st.write("## Summary") st.write(st.session_state.summary) st.write("## Quiz Questions") for i, question in enumerate(st.session_state.questions): st.write(f"### Question {i+1}") st.write(question['question']) st.session_state.user_answers[f"question_{i+1}"] = st.radio( label="", options=question['choices'], key=f"question_{i+1}" ) if st.button("Submit Answers"): if "questions" in st.session_state and st.session_state.questions: with st.spinner('Processing your answers...'): feedback = check_answers(client, st.session_state.questions, st.session_state.user_answers) st.write("## Feedback") for i, item in enumerate(feedback): with st.expander(f"Question {i+1} Feedback"): st.write(f"### {item['question']}") st.write(f"**Your answer:** {item['user_answer']}") st.write(f"**Correct answer:** {item['correct_answer']}") if item['status'] == "Incorrect": st.write(f"**Explanation:** {item['explanation']}") else: st.write("Please generate the quiz first.")