File size: 35,122 Bytes
52bf50c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
from __future__ import annotations
import os
#download for mecab
os.system('python -m unidic download')

# we need to compile a CUBLAS version 
# Or get it from  https://jllllll.github.io/llama-cpp-python-cuBLAS-wheels/
os.system('CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python==0.2.11')

# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"

# NOTE: for streaming will require gradio audio streaming fix
# pip install --upgrade -y gradio==0.50.2 git+https://github.com/gorkemgoknar/gradio.git@patch-1

import textwrap
from scipy.io.wavfile import write
from pydub import AudioSegment
import gradio as gr
import numpy as np
import torch
import nltk  # we'll use this to split into sentences
nltk.download("punkt")

import noisereduce as nr
import subprocess
import langid
import uuid
import emoji
import pathlib

import datetime

from scipy.io.wavfile import write
from pydub import AudioSegment

import re
import io, wave
import librosa
import torchaudio
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir


import gradio as gr
import os
import time

import gradio as gr
from transformers import pipeline
import numpy as np

from gradio_client import Client
from huggingface_hub import InferenceClient

# This will trigger downloading model
print("Downloading if not downloaded Coqui XTTS V2")

from TTS.utils.manage import ModelManager
model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
ModelManager().download_model(model_name)
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
print("XTTS downloaded")


print("Loading XTTS")
config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))

model = Xtts.init_from_config(config)
model.load_checkpoint(
    config,
    checkpoint_path=os.path.join(model_path, "model.pth"),
    vocab_path=os.path.join(model_path, "vocab.json"),
    eval=True,
    use_deepspeed=True,
)
model.cuda()
print("Done loading TTS")

#####llm_model = os.environ.get("LLM_MODEL", "mistral") # or "zephyr"

title = "Voice chat with Zephyr/Mistral and Coqui XTTS"

DESCRIPTION = """# Voice chat with Zephyr/Mistral and Coqui XTTS"""
css = """.toast-wrap { display: none !important } """

from huggingface_hub import HfApi

HF_TOKEN = os.environ.get("HF_TOKEN")
# will use api to restart space on a unrecoverable error
api = HfApi(token=HF_TOKEN)

repo_id = "coqui/voice-chat-with-zephyr"


default_system_message = f"""
You are ##LLM_MODEL###, a large language model trained ##LLM_MODEL_PROVIDER###, architecture of you is decoder-based LM. Your voice backend or text to speech TTS backend is provided via Coqui technology. You are right now served on Huggingface spaces.
Don't repeat. Answer short, only few words, as if in a talk. You cannot access the internet, but you have vast knowledge.
Current date: CURRENT_DATE .
"""

system_message = os.environ.get("SYSTEM_MESSAGE", default_system_message)
system_message = system_message.replace("CURRENT_DATE", str(datetime.date.today()))


# MISTRAL ONLY 
default_system_understand_message = (
    "I understand, I am a ##LLM_MODEL### chatbot with speech by Coqui team."
)
system_understand_message = os.environ.get(
    "SYSTEM_UNDERSTAND_MESSAGE", default_system_understand_message
)

print("Mistral system message set as:", default_system_message)
WHISPER_TIMEOUT = int(os.environ.get("WHISPER_TIMEOUT", 45))

whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")

ROLES = ["AI Assistant","AI Beard The Pirate"]

ROLE_PROMPTS = {}
ROLE_PROMPTS["AI Assistant"]=system_message

#Pirate scenario
character_name= "AI Beard"
character_scenario= f"As {character_name} you are a 28 year old man who is a pirate on the ship Invisible AI. You are good friends with Guybrush Threepwood and Murray the Skull. Developers did not get you into Monkey Island games as you wanted huge shares of Big Whoop treasure."
pirate_system_message = f"You as {character_name}. {character_scenario} Print out only exactly the words that {character_name} would speak out, do not add anything. Don't repeat. Answer short, only few words, as if in a talk. Craft your response only from the first-person perspective of {character_name} and never as user.Current date: #CURRENT_DATE#".replace("#CURRENT_DATE#", str(datetime.date.today()))

ROLE_PROMPTS["AI Beard The Pirate"]= pirate_system_message
##"You are an AI assistant with Zephyr model by Mistral and Hugging Face and speech from Coqui XTTS . User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps, your answers should be clear and short sentences"

### WILL USE LOCAL MISTRAL OR ZEPHYR OR YI
### While zephyr and yi will use half GPU to fit all into 16GB, XTTS will use at most 5GB VRAM 

from huggingface_hub import hf_hub_download
print("Downloading LLM")
print("Downloading Zephyr 7B beta")
#Zephyr
hf_hub_download(repo_id="TheBloke/zephyr-7B-beta-GGUF", local_dir=".", filename="zephyr-7b-beta.Q5_K_M.gguf")
zephyr_model_path="./zephyr-7b-beta.Q5_K_M.gguf"

print("Downloading Mistral 7B Instruct")
#Mistral
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", local_dir=".", filename="mistral-7b-instruct-v0.1.Q5_K_M.gguf")
mistral_model_path="./mistral-7b-instruct-v0.1.Q5_K_M.gguf"

#print("Downloading Yi-6B")
#Yi-6B
# Note current Yi is text-generation model not an instruct based model
#hf_hub_download(repo_id="TheBloke/Yi-6B-GGUF", local_dir=".", filename="yi-6b.Q5_K_M.gguf")
#yi_model_path="./yi-6b.Q5_K_M.gguf"


from llama_cpp import Llama
# set GPU_LAYERS to 15 if you have a 8GB GPU so both models can fit in
# else 35 full layers + XTTS works fine on T4 16GB
# 5gb per llm, 4gb XTTS -> full layers should fit T4 16GB , 2LLM + XTTS
GPU_LAYERS=int(os.environ.get("GPU_LAYERS",35))

LLM_STOP_WORDS= ["</s>","<|user|>","/s>","<EOT>","[/INST]"]

LLAMA_VERBOSE=False
print("Running Mistral")
llm_mistral = Llama(model_path=mistral_model_path,n_gpu_layers=GPU_LAYERS,max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE)
#print("Running LLM Mistral as InferenceClient")
#llm_mistral = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")


print("Running LLM Zephyr")
llm_zephyr = Llama(model_path=zephyr_model_path,n_gpu_layers=round(GPU_LAYERS/2),max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE)

#print("Running Yi LLM")
#llm_yi = Llama(model_path=yi_model_path,n_gpu_layers=round(GPU_LAYERS/2),max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE)


# Mistral formatter
def format_prompt_mistral(message, history, system_message=system_message,system_understand_message=system_understand_message):
    prompt = (
        "<s>[INST]" + system_message + "[/INST]" + system_understand_message + "</s>"
    )
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    
    if message=="":
        message="Hello"
    prompt += f"[INST] {message} [/INST]"
    return prompt

def format_prompt_yi(message, history, system_message=system_message,system_understand_message=system_understand_message):
    prompt = (
        "<s>[INST] [SYS]\n" + system_message + "\n[/SYS]\n\n[/INST]"
    )
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    
    if message=="":
        message="Hello"
    prompt += f"[INST] {message} [/INST]"
    return prompt

    
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!

# Zephyr formatter
def format_prompt_zephyr(message, history, system_message=system_message):
    prompt = (
        "<|system|>\n" + system_message  + "</s>"
    )
    for user_prompt, bot_response in history:
        prompt += f"<|user|>\n{user_prompt}</s>"
        prompt += f"<|assistant|>\n{bot_response}</s>"
    if message=="":
        message="Hello"
    prompt += f"<|user|>\n{message}</s>"
    prompt += f"<|assistant|>"
    print(prompt)
    return prompt


def generate_local(
    prompt,    
    history,
    llm_model="zephyr",
    system_message=None,
    temperature=0.8,
    max_tokens=256,
    top_p=0.95,
    stop = LLM_STOP_WORDS
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_tokens=max_tokens,
        top_p=top_p,
        stop=stop
    )

    if "zephyr" in llm_model.lower():
        sys_message= system_message.replace("##LLM_MODEL###","Zephyr").replace("##LLM_MODEL_PROVIDER###","Hugging Face")
        formatted_prompt = format_prompt_zephyr(prompt, history,system_message=sys_message)
        llm = llm_zephyr
    else:
        if "yi" in llm_model.lower():
            llm_provider= "01.ai"
            llm_model = "Yi"
            llm = llm_yi
            max_tokens= round(max_tokens/2)
        else:
            llm_provider= "Mistral"
            llm_model = "Mistral"
            llm = llm_mistral
        sys_message= system_message.replace("##LLM_MODEL###",llm_model).replace("##LLM_MODEL_PROVIDER###",llm_provider)
        sys_system_understand_message = system_understand_message.replace("##LLM_MODEL###",llm_model).replace("##LLM_MODEL_PROVIDER###",llm_provider)
        
        if "yi" in llm_model.lower():
            formatted_prompt = format_prompt_mistral(prompt, history,system_message=sys_message,system_understand_message="")
        else:
            formatted_prompt = format_prompt_mistral(prompt, history,system_message=sys_message,system_understand_message=sys_system_understand_message)

    try:
        print("LLM Input:", formatted_prompt)
        if llm_model=="OTHER":
            # Mistral endpoint too many Queues, wait time..
            generate_kwargs = dict(
                temperature=temperature,
                max_new_tokens=max_tokens,
                top_p=top_p,
            )
            
            stream = llm_mistral.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                character = response.token.text
                if character in LLM_STOP_WORDS:
                    # end of context
                    return 
                    
                if emoji.is_emoji(character):
                    # Bad emoji not a meaning messes chat from next lines
                    return
                
                output += character
                yield output
        else:
            # Local GGUF
            stream = llm(
                formatted_prompt,
                **generate_kwargs,
                stream=True,
            )
            output = ""
            for response in stream:
                character= response["choices"][0]["text"]

                if character in LLM_STOP_WORDS:
                    # end of context
                    return 
                    
                if emoji.is_emoji(character):
                    # Bad emoji not a meaning messes chat from next lines
                    return
                
                output += response["choices"][0]["text"].replace("<|assistant|>","").replace("<|user|>","")
                yield output

    except Exception as e:
        if "Too Many Requests" in str(e):
            print("ERROR: Too many requests on mistral client")
            gr.Warning("Unfortunately Mistral is unable to process")
            output = "Unfortuanately I am not able to process your request now !"
        else:
            print("Unhandled Exception: ", str(e))
            gr.Warning("Unfortunately Mistral is unable to process")
            output = "I do not know what happened but I could not understand you ."

    return output

def get_latents(speaker_wav,voice_cleanup=False):
    if (voice_cleanup):
        try:
            cleanup_filter="lowpass=8000,highpass=75,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02" 
            resample_filter="-ac 1 -ar 22050"
            out_filename = speaker_wav + str(uuid.uuid4()) + ".wav"  #ffmpeg to know output format
            #we will use newer ffmpeg as that has afftn denoise filter
            shell_command = f"ffmpeg -y -i {speaker_wav} -af {cleanup_filter} {resample_filter} {out_filename}".split(" ")

            command_result = subprocess.run([item for item in shell_command], capture_output=False,text=True, check=True)
            speaker_wav=out_filename
            print("Filtered microphone input")
        except subprocess.CalledProcessError:
            # There was an error - command exited with non-zero code
            print("Error: failed filtering, use original microphone input")
    else:
            speaker_wav=speaker_wav
            
    # create as function as we can populate here with voice cleanup/filtering
    (
        gpt_cond_latent,
        speaker_embedding,
    ) = model.get_conditioning_latents(audio_path=speaker_wav)
    return gpt_cond_latent, speaker_embedding

def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000):
    # This will create a wave header then append the frame input
    # It should be first on a streaming wav file
    # Other frames better should not have it (else you will hear some artifacts each chunk start)
    wav_buf = io.BytesIO()
    with wave.open(wav_buf, "wb") as vfout:
        vfout.setnchannels(channels)
        vfout.setsampwidth(sample_width)
        vfout.setframerate(sample_rate)
        vfout.writeframes(frame_input)

    wav_buf.seek(0)
    return wav_buf.read()


#Config will have more correct languages, they may be added before we append here
##["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn","ja"]

xtts_supported_languages=config.languages  
def detect_language(prompt):
    # Fast language autodetection
    if len(prompt)>15:
        language_predicted=langid.classify(prompt)[0].strip() # strip need as there is space at end!
        if language_predicted == "zh": 
            #we use zh-cn on xtts
            language_predicted = "zh-cn"
            
        if language_predicted not in xtts_supported_languages:
            print(f"Detected a language not supported by xtts :{language_predicted}, switching to english for now")
            gr.Warning(f"Language detected '{language_predicted}' can not be spoken properly 'yet' ")
            language= "en"
        else:
            language = language_predicted
        print(f"Language: Predicted sentence language:{language_predicted} , using language for xtts:{language}")
    else:
        # Hard to detect language fast in short sentence, use english default
        language = "en"
        print(f"Language: Prompt is short or autodetect language disabled using english for xtts")

    return language
    
def get_voice_streaming(prompt, language, latent_tuple, suffix="0"):
    gpt_cond_latent, speaker_embedding = latent_tuple

    try:
        t0 = time.time()
        chunks = model.inference_stream(
            prompt,
            language,
            gpt_cond_latent,
            speaker_embedding,
            repetition_penalty=7.0,
            temperature=0.85,
        )

        first_chunk = True
        for i, chunk in enumerate(chunks):
            if first_chunk:
                first_chunk_time = time.time() - t0
                metrics_text = f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n"
                first_chunk = False
            #print(f"Received chunk {i} of audio length {chunk.shape[-1]}")

            # In case output is required to be multiple voice files
            # out_file = f'{char}_{i}.wav'
            # write(out_file, 24000, chunk.detach().cpu().numpy().squeeze())
            # audio = AudioSegment.from_file(out_file)
            # audio.export(out_file, format='wav')
            # return out_file
            # directly return chunk as bytes for streaming
            chunk = chunk.detach().cpu().numpy().squeeze()
            chunk = (chunk * 32767).astype(np.int16)

            yield chunk.tobytes()

    except RuntimeError as e:
        if "device-side assert" in str(e):
            # cannot do anything on cuda device side error, need tor estart
            print(
                f"Exit due to: Unrecoverable exception caused by prompt:{prompt}",
                flush=True,
            )
            gr.Warning("Unhandled Exception encounter, please retry in a minute")
            print("Cuda device-assert Runtime encountered need restart")

            # HF Space specific.. This error is unrecoverable need to restart space
            api.restart_space(repo_id=repo_id)
        else:
            print("RuntimeError: non device-side assert error:", str(e))
            # Does not require warning happens on empty chunk and at end
            ###gr.Warning("Unhandled Exception encounter, please retry in a minute")
            return None
        return None
    except:
        return None

    
def transcribe(wav_path):
    try:
        # get result from whisper and strip it to delete begin and end space
        return whisper_client.predict(
				wav_path,	# str (filepath or URL to file) in 'inputs' Audio component
				"transcribe",	# str in 'Task' Radio component
				api_name="/predict"
        ).strip()
    except:
        gr.Warning("There was a problem with Whisper endpoint, telling a joke for you.")
        return "There was a problem with my voice, tell me joke"

    
# Will be triggered on text submit (will send to generate_speech)
def add_text(history, text):
    history = [] if history is None else history
    history = history + [(text, None)]
    return history, gr.update(value="", interactive=False)

# Will be triggered on voice submit (will transribe and send to generate_speech)
def add_file(history, file):
    history = [] if history is None else history

    try:
        text = transcribe(file)
        print("Transcribed text:", text)
    except Exception as e:
        print(str(e))
        gr.Warning("There was an issue with transcription, please try writing for now")
        # Apply a null text on error
        text = "Transcription seems failed, please tell me a joke about chickens"

    history = history + [(text, None)]
    return history, gr.update(value="", interactive=False)


##NOTE: not using this as it yields a chacter each time while we need to feed history to TTS
def bot(history, system_prompt=""):
    history = [["", None]] if history is None else history
    
    if system_prompt == "":
        system_prompt = system_message

    history[-1][1] = ""
    for character in generate(history[-1][0], history[:-1]):
        history[-1][1] = character
        yield history


def get_sentence(history, chatbot_role,llm_model,system_prompt=""):
    
    history = [["", None]] if history is None else history
    
    if system_prompt == "":
        system_prompt = system_message

    history[-1][1] = ""

    mistral_start = time.time()
    
    sentence_list = []
    sentence_hash_list = []

    text_to_generate = ""
    stored_sentence = None
    stored_sentence_hash = None

    print(chatbot_role)
    print(llm_model)
    
    for character in generate_local(history[-1][0], history[:-1],system_message=ROLE_PROMPTS[chatbot_role],llm_model=llm_model):
        history[-1][1] = character.replace("<|assistant|>","")
        # It is coming word by word

        text_to_generate = nltk.sent_tokenize(history[-1][1].replace("\n", " ").replace("<|assistant|>"," ").replace("<|ass>","").replace("[/ASST]","").replace("[/ASSI]","").replace("[/ASS]","").replace("","").strip())
        if len(text_to_generate) > 1:
            
            dif = len(text_to_generate) - len(sentence_list)

            if dif == 1 and len(sentence_list) != 0:
                continue

            if dif == 2 and len(sentence_list) != 0 and stored_sentence is not None:
                continue

            # All this complexity due to trying append first short sentence to next one for proper language auto-detect
            if stored_sentence is not None and stored_sentence_hash is None and dif>1:
                #means we consumed stored sentence and should look at next sentence to generate
                sentence = text_to_generate[len(sentence_list)+1]
            elif stored_sentence is not None and len(text_to_generate)>2 and stored_sentence_hash is not None:
                print("Appending stored")
                sentence = stored_sentence + text_to_generate[len(sentence_list)+1]
                stored_sentence_hash = None
            else:
                sentence = text_to_generate[len(sentence_list)]
                
            # too short sentence just append to next one if there is any
            # this is for proper language detection 
            if len(sentence)<=15 and stored_sentence_hash is None and stored_sentence is None:
                if sentence[-1] in [".","!","?"]:
                    if stored_sentence_hash != hash(sentence):
                        stored_sentence = sentence
                        stored_sentence_hash = hash(sentence) 
                        print("Storing:",stored_sentence)
                        continue
            
            
            sentence_hash = hash(sentence)
            if stored_sentence_hash is not None and sentence_hash == stored_sentence_hash:
                continue
            
            if sentence_hash not in sentence_hash_list:
                sentence_hash_list.append(sentence_hash)
                sentence_list.append(sentence)
                print("New Sentence: ", sentence)
                yield (sentence, history)

    # return that final sentence token
    try:
        last_sentence = nltk.sent_tokenize(history[-1][1].replace("\n", " ").replace("<|ass>","").replace("[/ASST]","").replace("[/ASSI]","").replace("[/ASS]","").replace("","").strip())[-1]
        sentence_hash = hash(last_sentence)
        if sentence_hash not in sentence_hash_list:
            if stored_sentence is not None and stored_sentence_hash is not None:
                last_sentence = stored_sentence + last_sentence
                stored_sentence = stored_sentence_hash = None
                print("Last Sentence with stored:",last_sentence)
        
            sentence_hash_list.append(sentence_hash)
            sentence_list.append(last_sentence)
            print("Last Sentence: ", last_sentence)
    
            yield (last_sentence, history)
    except:
        print("ERROR on last sentence history is :", history)


from scipy.io.wavfile import write
from pydub import AudioSegment

second_of_silence = AudioSegment.silent() # use default
second_of_silence.export("sil.wav", format='wav')


def generate_speech(history,chatbot_role,llm_model):
    # Must set autoplay to True first
    yield (history, chatbot_role, "", wave_header_chunk() )
    for sentence, history in get_sentence(history,chatbot_role,llm_model):
        if sentence != "":
            print("BG: inserting sentence to queue")
            
            generated_speech = generate_speech_for_sentence(history, chatbot_role, sentence,return_as_byte=True)
            if generated_speech is not None:
                _, audio_dict = generated_speech
                # We are using byte streaming
                yield (history, chatbot_role, sentence, audio_dict["value"] )
                
            
# will generate speech audio file per sentence
def generate_speech_for_sentence(history, chatbot_role, sentence, return_as_byte=False):
    language = "autodetect"

    wav_bytestream = b""
    
    if len(sentence)==0:
        print("EMPTY SENTENCE")
        return 
    
    # Sometimes prompt </s> coming on output remove it
    # Some post process for speech only
    sentence = sentence.replace("</s>", "")
    # remove code from speech
    sentence = re.sub("```.*```", "", sentence, flags=re.DOTALL)
    sentence = re.sub("`.*`", "", sentence, flags=re.DOTALL)
    
    sentence = re.sub("\(.*\)", "", sentence, flags=re.DOTALL)
    
    sentence = sentence.replace("```", "")
    sentence = sentence.replace("...", " ")
    sentence = sentence.replace("(", " ")
    sentence = sentence.replace(")", " ")
    sentence = sentence.replace("<|assistant|>","")

    if len(sentence)==0:
        print("EMPTY SENTENCE after processing")
        return 
        
    # A fast fix for last chacter, may produce weird sounds if it is with text
    #if (sentence[-1] in ["!", "?", ".", ","]) or (sentence[-2] in ["!", "?", ".", ","]):
    #    # just add a space
    #    sentence = sentence[:-1] + " " + sentence[-1]
        
    # regex does the job well
    sentence= re.sub("([^\x00-\x7F]|\w)(\.|\。|\?|\!)",r"\1 \2\2",sentence)
    
    print("Sentence for speech:", sentence)

    
    try:
        SENTENCE_SPLIT_LENGTH=350
        if len(sentence)<SENTENCE_SPLIT_LENGTH:
            # no problem continue on
            sentence_list = [sentence]
        else:
            # Until now nltk likely split sentences properly but we need additional 
            # check for longer sentence and split at last possible position
            # Do whatever necessary, first break at hypens then spaces and then even split very long words
            sentence_list=textwrap.wrap(sentence,SENTENCE_SPLIT_LENGTH)
            print("SPLITTED LONG SENTENCE:",sentence_list)
        
        for sentence in sentence_list:
            
            if any(c.isalnum() for c in sentence):
                if language=="autodetect":
                    #on first call autodetect, nexts sentence calls will use same language
                    language = detect_language(sentence) 
            
                #exists at least 1 alphanumeric (utf-8) 
                audio_stream = get_voice_streaming(
                        sentence, language, latent_map[chatbot_role]
                    )
            else:
                # likely got a ' or " or some other text without alphanumeric in it
                audio_stream = None 
                
            # XTTS is actually using streaming response but we are playing audio by sentence
            # If you want direct XTTS voice streaming (send each chunk to voice ) you may set DIRECT_STREAM=1 environment variable
            if audio_stream is not None:
                frame_length = 0
                for chunk in audio_stream:
                    try:
                        wav_bytestream += chunk
                        frame_length += len(chunk)
                    except:
                        # hack to continue on playing. sometimes last chunk is empty , will be fixed on next TTS
                        continue

            # Filter output for better voice
            filter_output=False 
            if filter_output:
                data_s16 = np.frombuffer(wav_bytestream, dtype=np.int16, count=len(wav_bytestream)//2, offset=0)
                float_data = data_s16 * 0.5**15
                reduced_noise = nr.reduce_noise(y=float_data, sr=24000,prop_decrease =0.8,n_fft=1024)
                wav_bytestream = (reduced_noise * 32767).astype(np.int16)
                wav_bytestream = wav_bytestream.tobytes()
                    
            if audio_stream is not None:
                if not return_as_byte:
                    audio_unique_filename = "/tmp/"+ str(uuid.uuid4())+".wav"
                    with wave.open(audio_unique_filename, "w") as f:
                        f.setnchannels(1)
                        # 2 bytes per sample.
                        f.setsampwidth(2)
                        f.setframerate(24000)
                        f.writeframes(wav_bytestream)
                           
                    return (history , gr.Audio.update(value=audio_unique_filename, autoplay=True))
                else:
                    return (history , gr.Audio.update(value=wav_bytestream, autoplay=True))
    except RuntimeError as e:
        if "device-side assert" in str(e):
            # cannot do anything on cuda device side error, need tor estart
            print(
                f"Exit due to: Unrecoverable exception caused by prompt:{sentence}",
                flush=True,
            )
            gr.Warning("Unhandled Exception encounter, please retry in a minute")
            print("Cuda device-assert Runtime encountered need restart")

            # HF Space specific.. This error is unrecoverable need to restart space
            api.restart_space(repo_id=repo_id)
        else:
            print("RuntimeError: non device-side assert error:", str(e))
            raise e

    print("All speech ended")
    return 

latent_map = {}
latent_map["AI Assistant"] = get_latents("examples/female.wav")
latent_map["AI Beard The Pirate"] = get_latents("examples/pirate_by_coqui.wav")

#### GRADIO INTERFACE ####

EXAMPLES = [
    [[],"AI Assistant","What is 42?"],
    [[],"AI Assistant","Speak in French, tell me how are you doing?"],
    [[],"AI Assistant","Antworten Sie mir von nun an auf Deutsch"],
    [[],"AI Assistant","给我讲个故事 的英文"],
    [[],"AI Beard The Pirate","Who are you?"],
    [[],"AI Beard The Pirate","Speak in Chinese, 你认识一个叫路飞的海贼吗"],
    [[],"AI Beard The Pirate","Speak in Japanese, ルフィという海賊を知っていますか?"],
    
    
]

MODELS = ["Zephyr 7B Beta","Mistral 7B Instruct"]

OTHER_HTML=f"""<div>
<a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a>
<a style='display:inline-block' href='https://discord.gg/5eXr5seRrv'><img src='https://discord.com/api/guilds/1037326658807533628/widget.png?style=shield' /></a>
<a href="https://huggingface.co/spaces/coqui/voice-chat-with-mistral?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0d00920c-8cc9-4bf3-90f2-a615797e5f59" />
</div>
"""

with gr.Blocks(title=title) as demo:
    gr.Markdown(DESCRIPTION)
    gr.Markdown(OTHER_HTML)
    with gr.Row():
        model_selected = gr.Dropdown(
            label="Select Instuct LLM Model to Use",
            info="Mistral, Zephyr: Mistral uses inference endpoint, Zephyr is 5 bit GGUF",
            choices=MODELS,
            max_choices=1,
            value=MODELS[0],
        )
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        avatar_images=("examples/hf-logo.png", "examples/coqui-logo.png"),
        bubble_full_width=False,
    )
    with gr.Row():
        chatbot_role = gr.Dropdown(
            label="Role of the Chatbot",
            info="How should Chatbot talk like",
            choices=ROLES,
            max_choices=1,
            value=ROLES[0],
        )
    with gr.Row():
        txt = gr.Textbox(
            scale=3,
            show_label=False,
            placeholder="Enter text and press enter, or speak to your microphone",
            container=False,
            interactive=True,
        )
        txt_btn = gr.Button(value="Submit text", scale=1)
        btn = gr.Audio(source="microphone", type="filepath", scale=4)

    def stop():
        print("Audio STOP")
        set_audio_playing(False)
        
    with gr.Row():
        sentence = gr.Textbox(visible=False)
        audio = gr.Audio(
            value=None,
            label="Generated audio response",
            streaming=True,
            autoplay=True,
            interactive=False,
            show_label=True,
        )
        
        audio.end(stop)
        
    with gr.Row():
        gr.Examples(
        EXAMPLES,
        [chatbot,chatbot_role, txt],
        [chatbot,chatbot_role, txt],
        add_text,
        cache_examples=False,
        run_on_click=False, # Will not work , user should submit it 
    )   

    def clear_inputs(chatbot):
        return None
    clear_btn = gr.ClearButton([chatbot, audio])
    chatbot_role.change(fn=clear_inputs, inputs=[chatbot], outputs=[chatbot])
    model_selected.change(fn=clear_inputs, inputs=[chatbot], outputs=[chatbot])
    
    txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
        generate_speech,  [chatbot,chatbot_role,model_selected], [chatbot,chatbot_role, sentence, audio]
    )

    txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)

    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
        generate_speech,  [chatbot,chatbot_role,model_selected], [chatbot,chatbot_role, sentence, audio]
    )

    txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)

    file_msg = btn.stop_recording(
        add_file, [chatbot, btn], [chatbot, txt], queue=False
    ).then(
        generate_speech,  [chatbot,chatbot_role,model_selected], [chatbot,chatbot_role, sentence, audio]
    )

    file_msg.then(lambda: (gr.update(interactive=True),gr.update(interactive=True,value=None)), None, [txt, btn], queue=False)

    gr.Markdown(
        """
This Space demonstrates how to speak to a chatbot, based solely on open accessible models.
It relies on following models :
Speech to Text : [Whisper-large-v2](https://sanchit-gandhi-whisper-large-v2.hf.space/) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
LLM Mistral    : [Mistral-7b-instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) as the chat model. 
LLM Zephyr     : [Zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) as the chat model. GGUF Q5_K_M quantized version used locally via llama_cpp from [huggingface.co/TheBloke](https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF).
Text to Speech : [Coqui's XTTS V2](https://huggingface.co/spaces/coqui/xtts) as a Multilingual TTS model, to generate the chatbot answers. This time, the model is hosted locally.

Note:
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
- Responses generated by chat model should not be assumed correct or taken serious, as this is a demonstration example only
- iOS (Iphone/Ipad) devices may not experience voice due to autoplay being disabled on these devices by Vendor"""
    )
demo.queue()
demo.launch(debug=True,share=True)