File size: 5,545 Bytes
19aa2b2
 
bb9fdf4
 
ca89999
 
 
9f250e3
ca89999
 
 
9f250e3
 
 
 
 
 
 
 
 
 
 
 
 
 
ca89999
 
 
9f250e3
 
 
 
 
 
 
 
 
 
 
ca89999
 
bb9fdf4
69fe433
ca89999
bb9fdf4
46a9a2d
 
 
c514c0a
 
e657a4d
c514c0a
ca89999
 
bb9fdf4
 
ca89999
bb9fdf4
ca89999
bb9fdf4
ca89999
 
 
 
9f250e3
 
 
 
 
ca89999
9f250e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca89999
 
9f250e3
 
 
 
 
ca89999
9f250e3
 
19aa2b2
9f250e3
 
 
ca89999
19aa2b2
9f250e3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gradio as gr
import pandas as pd
import requests
from io import StringIO

# Description and Introduction texts
DESCRIPTION = """
<h2 style='text-align: center; color: #cbff4d !important; text-shadow: 2px 2px 4px rgba(0,0,0,0.1);'>๐Ÿš€ LLM Inference Leaderboard: Pushing the Boundaries of Performance ๐Ÿš€</h2>
"""

INTRODUCTION = """
<div style='background-color: #e6ffd9; padding: 20px; border-radius: 15px; margin-bottom: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);'>
<h3 style='color: #00480a;'>๐Ÿ”ฌ Our Exciting Quest</h3>
<p style='color: #00480a;'>We're on a thrilling journey to help developers discover the perfect LLMs and libraries for their innovative projects! We've put these models through their paces using six cutting-edge inference engines:</p>
<ul style='color: #00480a;'>
    <li>๐Ÿš„ vLLM</li>
    <li>๐ŸŒŸ TGI</li>
    <li>โšก TensorRT-LLM</li>
    <li>๐Ÿ”ฎ Tritonvllm</li>
    <li>๐Ÿš€ Deepspeed-mii</li>
    <li>๐ŸŽฏ ctranslate</li>
</ul>
<p style='color: #00480a;'>All our tests were conducted on state-of-the-art A100 GPUs hosted on Azure, ensuring a fair and neutral battleground!</p>
<p style='color: #00480a; font-weight: bold;'>Our mission: Empower developers, researchers, and AI enthusiasts to find their perfect LLM match for both development and production environments!</p>
</div>
"""

HOW_WE_TESTED = """
<div style='background-color: #cbff4d; padding: 20px; border-radius: 15px; margin-top: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);'>
<h3 style='color: #00480a;'>๐Ÿงช Our Rigorous Testing Process</h3>
<p style='color: #00480a;'>We left no stone unturned in our quest for reliable benchmarks:</p>
<ul style='color: #00480a;'>
    <li><strong>๐Ÿ–ฅ๏ธ Platform:</strong> A100 GPUs from Azure - the ultimate testing ground!</li>
    <li><strong>๐Ÿณ Setup:</strong> Docker containers for each library, ensuring a pristine environment.</li>
    <li><strong>โš™๏ธ Configuration:</strong> Standardized settings (temperature 0.5, top_p 1) for laser-focused performance comparisons.</li>
    <li><strong>๐Ÿ“Š Prompts & Token Ranges:</strong> Six diverse prompts, input lengths from 20 to 2,000 tokens, and generation lengths of 100, 200, and 500 tokens - pushing the boundaries of flexibility!</li>
    <li><strong>๐Ÿค– Models & Libraries Tested:</strong> We put the best through their paces: Phi-3-medium-128k-instruct, Meta-Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, Qwen2-7B-Instruct, and Gemma-2-9b-it, using TGI, vLLM, DeepSpeed Mii, CTranslate2, Triton with vLLM Backend, and TensorRT-LLM.</li>
</ul>
</div>
"""

# URL of the CSV file
CSV_URL = "hf://datasets/rbgo/llm-inference-benchmark/LLM-inference-benchmark-3.csv"

def load_and_process_csv():
    # response = requests.get(CSV_URL)
    # csv_content = StringIO(response.text)
    df = pd.read_csv(CSV_URL)
    
    columns_order = [
        "Model_Name", "Library", "TTFT", "Tokens-per-Second", "Token_Count", "input_length","output_length"
    ]
    
    for col in columns_order:
        if col not in df.columns:
            df[col] = pd.NA
    
    return df[columns_order]

df = load_and_process_csv()

def get_leaderboard_df():
    return df

def filter_and_search(search_term, library_filter):
    filtered_df = df.copy()
    
    if search_term:
        filtered_df = filtered_df[filtered_df['Model_Name'].str.contains(search_term, case=False, na=False)]
    
    if library_filter != "All":
        filtered_df = filtered_df[filtered_df['Library'] == library_filter]
    
    return filtered_df

custom_css = """
body {
    background-color: #f0fff0;
    font-family: 'Roboto', sans-serif;
}
.gradio-container {
    max-width: 1200px !important;
}
.gradio-container .prose * {
    color: #00480a !important;
}
.gradio-container .prose h2,
.gradio-container .prose h3 {
    color: #00480a !important;
}
.tabs {
    background-color: #e6ffd9;
    border-radius: 15px;
    overflow: hidden;
    box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.tab-nav {
    background-color: #00480a;
    padding: 10px;
}
.tab-nav button {
    color: #cbff4d !important;
    background-color: #006400;
    border: none;
    padding: 10px 20px;
    margin-right: 5px;
    border-radius: 10px;
    cursor: pointer;
    transition: all 0.3s ease;
}
.tab-nav button:hover {
    background-color: #cbff4d;
    color: #00480a !important;
}
.tab-nav button.selected {
    background-color: #cbff4d;
    color: #00480a !important;
    font-weight: bold;
}
.gr-button-primary {
    background-color: #00480a !important;
    border-color: #00480a !important;
    color: #cbff4d !important;
}
.gr-button-primary:hover {
    background-color: #cbff4d !important;
    color: #00480a !important;
}
"""

with gr.Blocks(css=custom_css) as demo:
    gr.HTML(DESCRIPTION)
    gr.HTML(INTRODUCTION)
    
    with gr.Tabs():
        with gr.TabItem("๐Ÿ“Š Leaderboard"):
            with gr.Row():
                search_input = gr.Textbox(label="๐Ÿ” Search Model Name", placeholder="Enter model name...")
                library_dropdown = gr.Dropdown(choices=["All"] + df['Library'].unique().tolist(), label="๐Ÿท๏ธ Filter by Library", value="All")
            
            leaderboard = gr.DataFrame(df)
            
            gr.HTML(HOW_WE_TESTED)

    search_input.change(filter_and_search, inputs=[search_input, library_dropdown], outputs=leaderboard)
    library_dropdown.change(filter_and_search, inputs=[search_input, library_dropdown], outputs=leaderboard)

    demo.load(get_leaderboard_df, outputs=[leaderboard])

if __name__ == "__main__":
    demo.launch()