import gradio as gr import pandas as pd import requests from io import StringIO # Description and Introduction texts DESCRIPTION = """

๐Ÿš€ LLM Inference Leaderboard: Pushing the Boundaries of Performance ๐Ÿš€

""" INTRODUCTION = """

๐Ÿ”ฌ Our Exciting Quest

We're on a thrilling journey to help developers discover the perfect LLMs and libraries for their innovative projects! We've put these models through their paces using six cutting-edge inference engines:

All our tests were conducted on state-of-the-art A100 GPUs hosted on Azure, ensuring a fair and neutral battleground!

Our mission: Empower developers, researchers, and AI enthusiasts to find their perfect LLM match for both development and production environments!

""" HOW_WE_TESTED = """

๐Ÿงช Our Rigorous Testing Process

We left no stone unturned in our quest for reliable benchmarks:

""" # URL of the CSV file CSV_URL = "hf://datasets/rbgo/llm-inference-benchmark/LLM-inference-benchmark-3.csv" def load_and_process_csv(): # response = requests.get(CSV_URL) # csv_content = StringIO(response.text) df = pd.read_csv(CSV_URL) columns_order = [ "Model_Name", "Library", "TTFT", "Tokens-per-Second", "Token_Count", "input_length","output_length" ] for col in columns_order: if col not in df.columns: df[col] = pd.NA return df[columns_order] df = load_and_process_csv() def get_leaderboard_df(): return df def filter_and_search(search_term, library_filter): filtered_df = df.copy() if search_term: filtered_df = filtered_df[filtered_df['Model_Name'].str.contains(search_term, case=False, na=False)] if library_filter != "All": filtered_df = filtered_df[filtered_df['Library'] == library_filter] return filtered_df custom_css = """ body { background-color: #f0fff0; font-family: 'Roboto', sans-serif; } .gradio-container { max-width: 1200px !important; } .gradio-container .prose * { color: #00480a !important; } .gradio-container .prose h2, .gradio-container .prose h3 { color: #00480a !important; } .tabs { background-color: #e6ffd9; border-radius: 15px; overflow: hidden; box-shadow: 0 4px 6px rgba(0,0,0,0.1); } .tab-nav { background-color: #00480a; padding: 10px; } .tab-nav button { color: #cbff4d !important; background-color: #006400; border: none; padding: 10px 20px; margin-right: 5px; border-radius: 10px; cursor: pointer; transition: all 0.3s ease; } .tab-nav button:hover { background-color: #cbff4d; color: #00480a !important; } .tab-nav button.selected { background-color: #cbff4d; color: #00480a !important; font-weight: bold; } .gr-button-primary { background-color: #00480a !important; border-color: #00480a !important; color: #cbff4d !important; } .gr-button-primary:hover { background-color: #cbff4d !important; color: #00480a !important; } """ with gr.Blocks(css=custom_css) as demo: gr.HTML(DESCRIPTION) gr.HTML(INTRODUCTION) with gr.Tabs(): with gr.TabItem("๐Ÿ“Š Leaderboard"): with gr.Row(): search_input = gr.Textbox(label="๐Ÿ” Search Model Name", placeholder="Enter model name...") library_dropdown = gr.Dropdown(choices=["All"] + df['Library'].unique().tolist(), label="๐Ÿท๏ธ Filter by Library", value="All") leaderboard = gr.DataFrame(df) gr.HTML(HOW_WE_TESTED) search_input.change(filter_and_search, inputs=[search_input, library_dropdown], outputs=leaderboard) library_dropdown.change(filter_and_search, inputs=[search_input, library_dropdown], outputs=leaderboard) demo.load(get_leaderboard_df, outputs=[leaderboard]) if __name__ == "__main__": demo.launch()