Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from pathlib import Path | |
from matplotlib import pyplot as plt | |
import torch | |
import tempfile | |
import os | |
from sam_segment import predict_masks_with_sam | |
from lama_inpaint import inpaint_img_with_lama | |
from utils import load_img_to_array, save_array_to_img, dilate_mask, \ | |
show_mask, show_points | |
def mkstemp(suffix, dir=None): | |
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir) | |
os.close(fd) | |
return Path(path) | |
def get_masked_img(img, point_coords): | |
point_labels = [1] | |
dilate_kernel_size = 15 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
masks, _, _ = predict_masks_with_sam( | |
img, | |
[point_coords], | |
point_labels, | |
model_type="vit_h", | |
ckpt_p="pretrained_models/sam_vit_h_4b8939.pth", | |
device=device, | |
) | |
masks = masks.astype(np.uint8) * 255 | |
# dilate mask to avoid unmasked edge effect | |
if dilate_kernel_size is not None: | |
masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks] | |
figs = [] | |
for idx, mask in enumerate(masks): | |
# save the pointed and masked image | |
tmp_p = mkstemp(".png") | |
dpi = plt.rcParams['figure.dpi'] | |
height, width = img.shape[:2] | |
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77)) | |
plt.imshow(img) | |
plt.axis('off') | |
# show_points(plt.gca(), [point_coords], point_labels, | |
# size=(width*0.04)**2) | |
# plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0) | |
show_mask(plt.gca(), mask, random_color=False) | |
plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0) | |
figs.append(fig) | |
plt.close() | |
return figs | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
img = gr.Image(label="Image") | |
with gr.Row(label="Image with Segmentation Mask"): | |
img_with_mask_0 = gr.Plot() | |
img_with_mask_1 = gr.Plot() | |
img_with_mask_2 = gr.Plot() | |
with gr.Row(): | |
w = gr.Number() | |
h = gr.Number() | |
predict_mask = gr.Button("Predict Mask Using SAM") | |
def get_select_coords(evt: gr.SelectData): | |
return evt.index[0], evt.index[1] | |
img.select(get_select_coords, [], [w, h]) | |
predict_mask.click( | |
get_masked_img, | |
[img, [w, h]], | |
[img_with_mask_0, img_with_mask_1, img_with_mask_2] | |
) | |
if __name__ == "__main__": | |
demo.launch() |