Spaces:
Runtime error
Runtime error
qlz58793
commited on
Commit
•
469f43d
1
Parent(s):
c331e65
fast version
Browse files- app.py +59 -20
- lama_inpaint.py +70 -0
app.py
CHANGED
@@ -5,12 +5,13 @@ from matplotlib import pyplot as plt
|
|
5 |
import torch
|
6 |
import tempfile
|
7 |
import os
|
|
|
8 |
from sam_segment import predict_masks_with_sam
|
9 |
-
from lama_inpaint import inpaint_img_with_lama
|
10 |
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
11 |
show_mask, show_points
|
12 |
from PIL import Image
|
13 |
-
|
14 |
|
15 |
def mkstemp(suffix, dir=None):
|
16 |
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
|
@@ -18,19 +19,21 @@ def mkstemp(suffix, dir=None):
|
|
18 |
return Path(path)
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def get_masked_img(img, w, h):
|
22 |
-
point_labels = [1]
|
23 |
point_coords = [w, h]
|
|
|
24 |
dilate_kernel_size = 15
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
point_labels,
|
31 |
-
model_type="vit_h",
|
32 |
-
ckpt_p="pretrained_models/sam_vit_h_4b8939.pth",
|
33 |
-
device=device,
|
34 |
)
|
35 |
|
36 |
masks = masks.astype(np.uint8) * 255
|
@@ -67,22 +70,45 @@ def get_inpainted_img(img, mask0, mask1, mask2):
|
|
67 |
for mask in [mask0, mask1, mask2]:
|
68 |
if len(mask.shape)==3:
|
69 |
mask = mask[:,:,0]
|
70 |
-
img_inpainted =
|
71 |
-
img, mask, lama_config,
|
72 |
out.append(img_inpainted)
|
73 |
return out
|
74 |
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
with gr.Blocks() as demo:
|
77 |
with gr.Row():
|
78 |
img = gr.Image(label="Image")
|
|
|
|
|
79 |
with gr.Column():
|
80 |
with gr.Row():
|
81 |
w = gr.Number(label="Point Coordinate W")
|
82 |
h = gr.Number(label="Point Coordinate H")
|
83 |
-
|
|
|
84 |
lama = gr.Button("Inpaint Image Using LaMA")
|
85 |
|
|
|
86 |
with gr.Row():
|
87 |
mask_0 = gr.outputs.Image(type="numpy", label="Segmentation Mask 0")
|
88 |
mask_1 = gr.outputs.Image(type="numpy", label="Segmentation Mask 1")
|
@@ -101,11 +127,23 @@ with gr.Blocks() as demo:
|
|
101 |
img_rm_with_mask_2 = gr.outputs.Image(
|
102 |
type="numpy", label="Image Removed with Segmentation Mask 2")
|
103 |
|
104 |
-
def get_select_coords(evt: gr.SelectData):
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
img.select(get_select_coords, [], [w, h])
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
109 |
get_masked_img,
|
110 |
[img, w, h],
|
111 |
[img_with_mask_0, img_with_mask_1, img_with_mask_2, mask_0, mask_1, mask_2]
|
@@ -119,4 +157,5 @@ with gr.Blocks() as demo:
|
|
119 |
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
-
demo.launch()
|
|
|
|
5 |
import torch
|
6 |
import tempfile
|
7 |
import os
|
8 |
+
from omegaconf import OmegaConf
|
9 |
from sam_segment import predict_masks_with_sam
|
10 |
+
from lama_inpaint import inpaint_img_with_lama, build_lama_model, inpaint_img_with_builded_lama
|
11 |
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
12 |
show_mask, show_points
|
13 |
from PIL import Image
|
14 |
+
from segment_anything import SamPredictor, sam_model_registry
|
15 |
|
16 |
def mkstemp(suffix, dir=None):
|
17 |
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
|
|
|
19 |
return Path(path)
|
20 |
|
21 |
|
22 |
+
def get_sam_feat(img):
|
23 |
+
# predictor.set_image(img)
|
24 |
+
model['sam'].set_image(img)
|
25 |
+
return
|
26 |
+
|
27 |
+
|
28 |
def get_masked_img(img, w, h):
|
|
|
29 |
point_coords = [w, h]
|
30 |
+
point_labels = [1]
|
31 |
dilate_kernel_size = 15
|
32 |
+
# masks, _, _ = predictor.predict(
|
33 |
+
masks, _, _ = model['sam'].predict(
|
34 |
+
point_coords=np.array([point_coords]),
|
35 |
+
point_labels=np.array(point_labels),
|
36 |
+
multimask_output=True,
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
|
39 |
masks = masks.astype(np.uint8) * 255
|
|
|
70 |
for mask in [mask0, mask1, mask2]:
|
71 |
if len(mask.shape)==3:
|
72 |
mask = mask[:,:,0]
|
73 |
+
img_inpainted = inpaint_img_with_builded_lama(
|
74 |
+
model_lama, img, mask, lama_config, device=device)
|
75 |
out.append(img_inpainted)
|
76 |
return out
|
77 |
|
78 |
|
79 |
+
## build models
|
80 |
+
model = {}
|
81 |
+
# build the sam model
|
82 |
+
model_type="vit_h"
|
83 |
+
ckpt_p="pretrained_models/sam_vit_h_4b8939.pth"
|
84 |
+
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
|
85 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
86 |
+
model_sam.to(device=device)
|
87 |
+
# predictor = SamPredictor(model_sam)
|
88 |
+
model['sam'] = SamPredictor(model_sam)
|
89 |
+
|
90 |
+
# build the lama model
|
91 |
+
lama_config = "third_party/lama/configs/prediction/default.yaml"
|
92 |
+
lama_ckpt = "pretrained_models/big-lama"
|
93 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
94 |
+
# model_lama = build_lama_model(lama_config, lama_ckpt, device=device)
|
95 |
+
model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device)
|
96 |
+
|
97 |
+
|
98 |
with gr.Blocks() as demo:
|
99 |
with gr.Row():
|
100 |
img = gr.Image(label="Image")
|
101 |
+
# img_pointed = gr.Image(label='Pointed Image')
|
102 |
+
img_pointed = gr.Plot(label='Pointed Image')
|
103 |
with gr.Column():
|
104 |
with gr.Row():
|
105 |
w = gr.Number(label="Point Coordinate W")
|
106 |
h = gr.Number(label="Point Coordinate H")
|
107 |
+
sam_feat = gr.Button("Generate Features Using SAM")
|
108 |
+
sam_mask = gr.Button("Predict Mask Using SAM")
|
109 |
lama = gr.Button("Inpaint Image Using LaMA")
|
110 |
|
111 |
+
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
|
112 |
with gr.Row():
|
113 |
mask_0 = gr.outputs.Image(type="numpy", label="Segmentation Mask 0")
|
114 |
mask_1 = gr.outputs.Image(type="numpy", label="Segmentation Mask 1")
|
|
|
127 |
img_rm_with_mask_2 = gr.outputs.Image(
|
128 |
type="numpy", label="Image Removed with Segmentation Mask 2")
|
129 |
|
130 |
+
def get_select_coords(img, evt: gr.SelectData):
|
131 |
+
dpi = plt.rcParams['figure.dpi']
|
132 |
+
height, width = img.shape[:2]
|
133 |
+
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
134 |
+
plt.imshow(img)
|
135 |
+
plt.axis('off')
|
136 |
+
show_points(plt.gca(), [[evt.index[0], evt.index[1]]], [1],
|
137 |
+
size=(width*0.04)**2)
|
138 |
+
return evt.index[0], evt.index[1], fig
|
139 |
|
140 |
+
img.select(get_select_coords, [img], [w, h, img_pointed])
|
141 |
+
sam_feat.click(
|
142 |
+
get_sam_feat,
|
143 |
+
[img],
|
144 |
+
[]
|
145 |
+
)
|
146 |
+
sam_mask.click(
|
147 |
get_masked_img,
|
148 |
[img, w, h],
|
149 |
[img_with_mask_0, img_with_mask_1, img_with_mask_2, mask_0, mask_1, mask_2]
|
|
|
157 |
|
158 |
|
159 |
if __name__ == "__main__":
|
160 |
+
demo.launch(debug=True)
|
161 |
+
|
lama_inpaint.py
CHANGED
@@ -82,6 +82,76 @@ def inpaint_img_with_lama(
|
|
82 |
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
83 |
return cur_res
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def setup_args(parser):
|
86 |
parser.add_argument(
|
87 |
"--input_img", type=str, required=True,
|
|
|
82 |
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
83 |
return cur_res
|
84 |
|
85 |
+
|
86 |
+
def build_lama_model(
|
87 |
+
config_p: str,
|
88 |
+
ckpt_p: str,
|
89 |
+
device="cuda"
|
90 |
+
):
|
91 |
+
predict_config = OmegaConf.load(config_p)
|
92 |
+
predict_config.model.path = ckpt_p
|
93 |
+
# device = torch.device(predict_config.device)
|
94 |
+
device = torch.device(device)
|
95 |
+
|
96 |
+
train_config_path = os.path.join(
|
97 |
+
predict_config.model.path, 'config.yaml')
|
98 |
+
|
99 |
+
with open(train_config_path, 'r') as f:
|
100 |
+
train_config = OmegaConf.create(yaml.safe_load(f))
|
101 |
+
|
102 |
+
train_config.training_model.predict_only = True
|
103 |
+
train_config.visualizer.kind = 'noop'
|
104 |
+
|
105 |
+
checkpoint_path = os.path.join(
|
106 |
+
predict_config.model.path, 'models',
|
107 |
+
predict_config.model.checkpoint
|
108 |
+
)
|
109 |
+
model = load_checkpoint(
|
110 |
+
train_config, checkpoint_path, strict=False, map_location=device)
|
111 |
+
model.freeze()
|
112 |
+
if not predict_config.get('refine', False):
|
113 |
+
model.to(device)
|
114 |
+
|
115 |
+
return model
|
116 |
+
|
117 |
+
|
118 |
+
@torch.no_grad()
|
119 |
+
def inpaint_img_with_builded_lama(
|
120 |
+
model,
|
121 |
+
img: np.ndarray,
|
122 |
+
mask: np.ndarray,
|
123 |
+
config_p: str,
|
124 |
+
mod=8,
|
125 |
+
device="cuda"
|
126 |
+
):
|
127 |
+
assert len(mask.shape) == 2
|
128 |
+
if np.max(mask) == 1:
|
129 |
+
mask = mask * 255
|
130 |
+
img = torch.from_numpy(img).float().div(255.)
|
131 |
+
mask = torch.from_numpy(mask).float()
|
132 |
+
predict_config = OmegaConf.load(config_p)
|
133 |
+
|
134 |
+
batch = {}
|
135 |
+
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
|
136 |
+
batch['mask'] = mask[None, None]
|
137 |
+
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
|
138 |
+
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
|
139 |
+
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
|
140 |
+
batch = move_to_device(batch, device)
|
141 |
+
batch['mask'] = (batch['mask'] > 0) * 1
|
142 |
+
|
143 |
+
batch = model(batch)
|
144 |
+
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
|
145 |
+
cur_res = cur_res.detach().cpu().numpy()
|
146 |
+
|
147 |
+
if unpad_to_size is not None:
|
148 |
+
orig_height, orig_width = unpad_to_size
|
149 |
+
cur_res = cur_res[:orig_height, :orig_width]
|
150 |
+
|
151 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
152 |
+
return cur_res
|
153 |
+
|
154 |
+
|
155 |
def setup_args(parser):
|
156 |
parser.add_argument(
|
157 |
"--input_img", type=str, required=True,
|