Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,412 Bytes
21f9445 bd4377a 9e62897 21f9445 43ea383 21f9445 6e2805f 21f9445 6e2805f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import sys
sys.path.append('./')
import os
import cv2
import random
import numpy as np
from PIL import Image
import spaces
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
from ip_adapter import IPAdapterXL
import os
os.system("git lfs install")
os.system("git clone https://huggingface.co/h94/IP-Adapter")
os.system("mv IP-Adapter/sdxl_models sdxl_models")
# global variable
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
# initialization
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
controlnet_path = "diffusers/controlnet-canny-sdxl-1.0"
controlnet = ControlNetModel.from_pretrained(controlnet_path, use_safetensors=False, torch_dtype=torch.float16).to(device)
# load SDXL pipeline
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
add_watermarker=False,
)
# load ip-adapter
# target_blocks=["block"] for original IP-Adapter
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def get_example():
case = [
[
"./assets/0.jpg",
None,
"a cat, masterpiece, best quality, high quality",
1.0,
0.0
],
[
"./assets/1.jpg",
None,
"a cat, masterpiece, best quality, high quality",
1.0,
0.0
],
[
"./assets/2.jpg",
None,
"a cat, masterpiece, best quality, high quality",
1.0,
0.0
],
[
"./assets/3.jpg",
None,
"a cat, masterpiece, best quality, high quality",
1.0,
0.0
],
[
"./assets/2.jpg",
"./assets/yann-lecun.jpg",
"a man, masterpiece, best quality, high quality",
1.0,
0.6
],
]
return case
def run_for_examples(style_image, source_image, prompt, scale, control_scale):
return create_image(
image_pil=style_image,
input_image=source_image,
prompt=prompt,
n_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
scale=scale,
control_scale=control_scale,
guidance_scale=5,
num_samples=1,
num_inference_steps=20,
seed=42,
target="Load only style blocks",
neg_content_prompt="",
neg_content_scale=0,
)
@spaces.GPU(enable_queue=True)
def create_image(image_pil,
input_image,
prompt,
n_prompt,
scale,
control_scale,
guidance_scale,
num_samples,
num_inference_steps,
seed,
target="Load only style blocks",
neg_content_prompt=None,
neg_content_scale=0):
if target =="Load original IP-Adapter":
# target_blocks=["blocks"] for original IP-Adapter
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"])
elif target=="Load only style blocks":
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])
elif target == "Load style+layout block":
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"])
if input_image is not None:
input_image = resize_img(input_image, max_side=1024)
cv_input_image = pil_to_cv2(input_image)
detected_map = cv2.Canny(cv_input_image, 50, 200)
canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
else:
canny_map = Image.new('RGB', (1024, 1024), color=(255, 255, 255))
control_scale = 0
if float(control_scale) == 0:
canny_map = canny_map.resize((1024,1024))
if len(neg_content_prompt) > 0 and neg_content_scale != 0:
images = ip_model.generate(pil_image=image_pil,
prompt=prompt,
negative_prompt=n_prompt,
scale=scale,
guidance_scale=guidance_scale,
num_samples=num_samples,
num_inference_steps=num_inference_steps,
seed=seed,
image=canny_map,
controlnet_conditioning_scale=float(control_scale),
neg_content_prompt=neg_content_prompt,
neg_content_scale=neg_content_scale
)
else:
images = ip_model.generate(pil_image=image_pil,
prompt=prompt,
negative_prompt=n_prompt,
scale=scale,
guidance_scale=guidance_scale,
num_samples=num_samples,
num_inference_steps=num_inference_steps,
seed=seed,
image=canny_map,
controlnet_conditioning_scale=float(control_scale),
)
return images
def pil_to_cv2(image_pil):
image_np = np.array(image_pil)
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
return image_cv2
# Description
title = r"""
<h1 align="center">InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantStyle/InstantStyle' target='_blank'><b>InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</b></a>.<br>
How to use:<br>
1. Upload a style image.
2. Set stylization mode, only use style block by default.
2. Enter a text prompt, as done in normal text-to-image models.
3. Click the <b>Submit</b> button to begin customization.
4. Share your stylized photo with your friends and enjoy! 😊
Advanced usage:<br>
1. Click advanced options.
2. Upload another source image for image-based stylization using ControlNet.
3. Enter negative content prompt to avoid content leakage.
"""
article = r"""
---
📝 **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{wang2024instantstyle,
title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation},
author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony},
journal={arXiv preprint arXiv:2404.02733},
year={2024}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>.
"""
block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False)
with block:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Tabs():
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
image_pil = gr.Image(label="Style Image", type='pil')
target = gr.Radio(["Load only style blocks", "Load style+layout block", "Load original IP-Adapter"],
value="Load only style blocks",
label="Style mode")
prompt = gr.Textbox(label="Prompt",
value="a cat, masterpiece, best quality, high quality")
scale = gr.Slider(minimum=0,maximum=2.0, step=0.01,value=1.0, label="Scale")
with gr.Accordion(open=False, label="Advanced Options"):
with gr.Column():
src_image_pil = gr.Image(label="Source Image (optional)", type='pil')
control_scale = gr.Slider(minimum=0,maximum=1.0, step=0.01,value=0.5, label="Controlnet conditioning scale")
n_prompt = gr.Textbox(label="Neg Prompt", value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry")
neg_content_prompt = gr.Textbox(label="Neg Content Prompt", value="")
neg_content_scale = gr.Slider(minimum=0, maximum=1.0, step=0.01,value=0.5, label="Neg Content Scale")
guidance_scale = gr.Slider(minimum=1,maximum=15.0, step=0.01,value=5.0, label="guidance scale")
num_samples= gr.Slider(minimum=1,maximum=4.0, step=1.0,value=1.0, label="num samples")
num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=20, label="num inference steps")
seed = gr.Slider(minimum=-1000000,maximum=1000000,value=1, step=1, label="Seed Value")
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
generate_button = gr.Button("Generate Image")
with gr.Column():
generated_image = gr.Gallery(label="Generated Image")
generate_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=create_image,
inputs=[image_pil,
src_image_pil,
prompt,
n_prompt,
scale,
control_scale,
guidance_scale,
num_samples,
num_inference_steps,
seed,
target,
neg_content_prompt,
neg_content_scale],
outputs=[generated_image])
gr.Examples(
examples=get_example(),
inputs=[image_pil, src_image_pil, prompt, scale, control_scale],
fn=run_for_examples,
outputs=[generated_image],
cache_examples=True,
)
gr.Markdown(article)
block.launch() |