File size: 12,412 Bytes
21f9445
 
 
 
 
 
 
 
 
 
 
bd4377a
9e62897
21f9445
 
 
 
 
43ea383
 
 
 
21f9445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2805f
21f9445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2805f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import sys
sys.path.append('./')


import os 
import cv2
import random
import numpy as np
from PIL import Image

import spaces
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
import torch
import gradio as gr
from huggingface_hub import hf_hub_download

from ip_adapter import IPAdapterXL

import os
os.system("git lfs install")
os.system("git clone https://huggingface.co/h94/IP-Adapter")
os.system("mv IP-Adapter/sdxl_models sdxl_models")

# global variable
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32

# initialization
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"

controlnet_path = "diffusers/controlnet-canny-sdxl-1.0"
controlnet = ControlNetModel.from_pretrained(controlnet_path, use_safetensors=False, torch_dtype=torch.float16).to(device)

# load SDXL pipeline
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    base_model_path,
    controlnet=controlnet,
    torch_dtype=torch.float16,
    add_watermarker=False,
)

# load ip-adapter
# target_blocks=["block"] for original IP-Adapter
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def resize_img(
    input_image,
    max_side=1280,
    min_side=1024,
    size=None,
    pad_to_max_side=False,
    mode=Image.BILINEAR,
    base_pixel_number=64,
):
    w, h = input_image.size
    if size is not None:
        w_resize_new, h_resize_new = size
    else:
        ratio = min_side / min(h, w)
        w, h = round(ratio * w), round(ratio * h)
        ratio = max_side / max(h, w)
        input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
        w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
        h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
    input_image = input_image.resize([w_resize_new, h_resize_new], mode)

    if pad_to_max_side:
        res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
        offset_x = (max_side - w_resize_new) // 2
        offset_y = (max_side - h_resize_new) // 2
        res[
            offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
        ] = np.array(input_image)
        input_image = Image.fromarray(res)
    return input_image

def get_example():
    case = [
        [
            "./assets/0.jpg",
            None,
            "a cat, masterpiece, best quality, high quality",
            1.0,
            0.0
        ],
        [
            "./assets/1.jpg",
            None,
            "a cat, masterpiece, best quality, high quality",
            1.0,
            0.0
        ],
        [
            "./assets/2.jpg",
            None,
            "a cat, masterpiece, best quality, high quality",
            1.0,
            0.0
        ],
        [
            "./assets/3.jpg",
            None,
            "a cat, masterpiece, best quality, high quality",
            1.0,
            0.0
        ],
        [
            "./assets/2.jpg",
            "./assets/yann-lecun.jpg",
            "a man, masterpiece, best quality, high quality",
            1.0,
            0.6
        ],
    ]
    return case

def run_for_examples(style_image, source_image, prompt, scale, control_scale):

    return create_image(
        image_pil=style_image,
        input_image=source_image,
        prompt=prompt,
        n_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
        scale=scale,
        control_scale=control_scale,
        guidance_scale=5,
        num_samples=1,
        num_inference_steps=20,
        seed=42,
        target="Load only style blocks",
        neg_content_prompt="",
        neg_content_scale=0,
    )

@spaces.GPU(enable_queue=True)
def create_image(image_pil,
                 input_image,
                 prompt,
                 n_prompt,
                 scale, 
                 control_scale, 
                 guidance_scale,
                 num_samples,
                 num_inference_steps,
                 seed,
                 target="Load only style blocks",
                 neg_content_prompt=None,
                 neg_content_scale=0):

    if target =="Load original IP-Adapter":
        # target_blocks=["blocks"] for original IP-Adapter
        ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"])
    elif target=="Load only style blocks":
        # target_blocks=["up_blocks.0.attentions.1"] for style blocks only
        ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])
    elif target == "Load style+layout block":
        # target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
        ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"])
    
    if input_image is not None:
        input_image = resize_img(input_image, max_side=1024)
        cv_input_image = pil_to_cv2(input_image)
        detected_map = cv2.Canny(cv_input_image, 50, 200)
        canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
    else:
        canny_map = Image.new('RGB', (1024, 1024), color=(255, 255, 255))
        control_scale = 0

    if float(control_scale) == 0:
        canny_map = canny_map.resize((1024,1024))
    
    if len(neg_content_prompt) > 0 and neg_content_scale != 0:
        images = ip_model.generate(pil_image=image_pil,
                                prompt=prompt,
                                negative_prompt=n_prompt,
                                scale=scale,
                                guidance_scale=guidance_scale,
                                num_samples=num_samples,
                                num_inference_steps=num_inference_steps, 
                                seed=seed,
                                image=canny_map,
                                controlnet_conditioning_scale=float(control_scale),
                                neg_content_prompt=neg_content_prompt,
                                neg_content_scale=neg_content_scale
                                )
    else:
        images = ip_model.generate(pil_image=image_pil,
                                prompt=prompt,
                                negative_prompt=n_prompt,
                                scale=scale,
                                guidance_scale=guidance_scale,
                                num_samples=num_samples,
                                num_inference_steps=num_inference_steps, 
                                seed=seed,
                                image=canny_map,
                                controlnet_conditioning_scale=float(control_scale),
                                )
    return images

def pil_to_cv2(image_pil):
    image_np = np.array(image_pil)
    image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
    return image_cv2

# Description
title = r"""
<h1 align="center">InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</h1>
"""

description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantStyle/InstantStyle' target='_blank'><b>InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</b></a>.<br>

How to use:<br>
1. Upload a style image.
2. Set stylization mode, only use style block by default.
2. Enter a text prompt, as done in normal text-to-image models.
3. Click the <b>Submit</b> button to begin customization.
4. Share your stylized photo with your friends and enjoy! 😊


Advanced usage:<br>
1. Click advanced options.
2. Upload another source image for image-based stylization using ControlNet.
3. Enter negative content prompt to avoid content leakage.
"""

article = r"""
---
📝 **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{wang2024instantstyle,
  title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation},
  author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony},
  journal={arXiv preprint arXiv:2404.02733},
  year={2024}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>.
"""

block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False)
with block:
    
    # description
    gr.Markdown(title)
    gr.Markdown(description)
    
    with gr.Tabs():
        with gr.Row():
            with gr.Column():
                
                with gr.Row():
                    with gr.Column():
                        image_pil = gr.Image(label="Style Image", type='pil')
                
                target = gr.Radio(["Load only style blocks", "Load style+layout block", "Load original IP-Adapter"], 
                                  value="Load only style blocks",
                                  label="Style mode")
                
                prompt = gr.Textbox(label="Prompt",
                                    value="a cat, masterpiece, best quality, high quality")
                
                scale = gr.Slider(minimum=0,maximum=2.0, step=0.01,value=1.0, label="Scale")
                
                with gr.Accordion(open=False, label="Advanced Options"):
                    
                    with gr.Column():
                        src_image_pil = gr.Image(label="Source Image (optional)", type='pil')
                    control_scale = gr.Slider(minimum=0,maximum=1.0, step=0.01,value=0.5, label="Controlnet conditioning scale")
                    
                    n_prompt = gr.Textbox(label="Neg Prompt", value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry")
                    
                    neg_content_prompt = gr.Textbox(label="Neg Content Prompt", value="")
                    neg_content_scale = gr.Slider(minimum=0, maximum=1.0, step=0.01,value=0.5, label="Neg Content Scale")

                    guidance_scale = gr.Slider(minimum=1,maximum=15.0, step=0.01,value=5.0, label="guidance scale")
                    num_samples= gr.Slider(minimum=1,maximum=4.0, step=1.0,value=1.0, label="num samples")
                    num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=20, label="num inference steps")
                    seed = gr.Slider(minimum=-1000000,maximum=1000000,value=1, step=1, label="Seed Value")
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    
                generate_button = gr.Button("Generate Image")
                
            with gr.Column():
                generated_image = gr.Gallery(label="Generated Image")

        generate_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=create_image,
            inputs=[image_pil,
                    src_image_pil,
                    prompt,
                    n_prompt,
                    scale, 
                    control_scale, 
                    guidance_scale,
                    num_samples,
                    num_inference_steps,
                    seed,
                    target,
                    neg_content_prompt,
                    neg_content_scale], 
            outputs=[generated_image])
    
    gr.Examples(
        examples=get_example(),
        inputs=[image_pil, src_image_pil, prompt, scale, control_scale],
        fn=run_for_examples,
        outputs=[generated_image],
        cache_examples=True,
    )
    
    gr.Markdown(article)

block.launch()