Spaces:
Running
on
L40S
Running
on
L40S
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
import spaces | |
from PIL import Image | |
import os | |
from models.transformer_sd3 import SD3Transformer2DModel | |
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline | |
from transformers import AutoProcessor, SiglipVisionModel | |
from huggingface_hub import hf_hub_download | |
# Constants | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
model_path = 'stabilityai/stable-diffusion-3.5-large' | |
image_encoder_path = "google/siglip-so400m-patch14-384" | |
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin") | |
transformer = SD3Transformer2DModel.from_pretrained( | |
model_path, | |
subfolder="transformer", | |
torch_dtype=torch.bfloat16 | |
) | |
pipe = StableDiffusion3Pipeline.from_pretrained( | |
model_path, | |
transformer=transformer, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
pipe.init_ipadapter( | |
ip_adapter_path=ipadapter_path, | |
image_encoder_path=image_encoder_path, | |
nb_token=64, | |
) | |
def resize_img(image, max_size=1024): | |
width, height = image.size | |
scaling_factor = min(max_size / width, max_size / height) | |
new_width = int(width * scaling_factor) | |
new_height = int(height * scaling_factor) | |
return image.resize((new_width, new_height), Image.LANCZOS) | |
def process_image( | |
image, | |
prompt, | |
scale, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
#pipe.to("cuda") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if image is None: | |
return None, seed | |
# Convert to PIL Image if needed | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
# Resize image | |
image = resize_img(image) | |
# Generate the image | |
result = pipe( | |
clip_image=image, | |
prompt=prompt, | |
ipadapter_scale=scale, | |
width=width, | |
height=height, | |
generator=torch.Generator().manual_seed(seed) | |
).images[0] | |
return result, seed | |
# UI CSS | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 960px; | |
} | |
""" | |
# Create the Gradio interface | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# InstantX's SD3.5 IP Adapter") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image( | |
label="Input Image", | |
type="pil" | |
) | |
scale = gr.Slider( | |
label="Image Scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.7, | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
run_button = gr.Button("Generate", variant="primary") | |
with gr.Column(): | |
result = gr.Image(label="Result") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
run_button.click( | |
fn=process_image, | |
inputs=[ | |
input_image, | |
prompt, | |
scale, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() |