Spaces:
Running
on
L40S
Running
on
L40S
import os | |
import glob | |
import numpy as np | |
from PIL import Image | |
import torch | |
import torch.nn as nn | |
from pipeline_flux_ipa import FluxPipeline | |
from transformer_flux import FluxTransformer2DModel | |
from attention_processor import IPAFluxAttnProcessor2_0 | |
from transformers import AutoProcessor, SiglipVisionModel | |
def resize_img(input_image, max_side=1280, min_side=1024, size=None, | |
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): | |
w, h = input_image.size | |
if size is not None: | |
w_resize_new, h_resize_new = size | |
else: | |
ratio = min_side / min(h, w) | |
w, h = round(ratio*w), round(ratio*h) | |
ratio = max_side / max(h, w) | |
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) | |
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
if pad_to_max_side: | |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
offset_x = (max_side - w_resize_new) // 2 | |
offset_y = (max_side - h_resize_new) // 2 | |
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) | |
input_image = Image.fromarray(res) | |
return input_image | |
class MLPProjModel(torch.nn.Module): | |
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.num_tokens = num_tokens | |
self.proj = torch.nn.Sequential( | |
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), | |
torch.nn.GELU(), | |
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), | |
) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
def forward(self, id_embeds): | |
x = self.proj(id_embeds) | |
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) | |
x = self.norm(x) | |
return x | |
class IPAdapter: | |
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4): | |
self.device = device | |
self.image_encoder_path = image_encoder_path | |
self.ip_ckpt = ip_ckpt | |
self.num_tokens = num_tokens | |
self.pipe = sd_pipe.to(self.device) | |
self.set_ip_adapter() | |
# load image encoder | |
self.image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path).to(self.device, dtype=torch.bfloat16) | |
self.clip_image_processor = AutoProcessor.from_pretrained(self.image_encoder_path) | |
# image proj model | |
self.image_proj_model = self.init_proj() | |
self.load_ip_adapter() | |
def init_proj(self): | |
image_proj_model = MLPProjModel( | |
cross_attention_dim=self.pipe.transformer.config.joint_attention_dim, # 4096 | |
id_embeddings_dim=1152, | |
num_tokens=self.num_tokens, | |
).to(self.device, dtype=torch.bfloat16) | |
return image_proj_model | |
def set_ip_adapter(self): | |
transformer = self.pipe.transformer | |
ip_attn_procs = {} # 19+38=57 | |
for name in transformer.attn_processors.keys(): | |
if name.startswith("transformer_blocks.") or name.startswith("single_transformer_blocks"): | |
ip_attn_procs[name] = IPAFluxAttnProcessor2_0( | |
hidden_size=transformer.config.num_attention_heads * transformer.config.attention_head_dim, | |
cross_attention_dim=transformer.config.joint_attention_dim, | |
num_tokens=self.num_tokens, | |
).to(self.device, dtype=torch.bfloat16) | |
else: | |
ip_attn_procs[name] = transformer.attn_processors[name] | |
transformer.set_attn_processor(ip_attn_procs) | |
def load_ip_adapter(self): | |
state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True) | |
ip_layers = torch.nn.ModuleList(self.pipe.transformer.attn_processors.values()) | |
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) | |
def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
if pil_image is not None: | |
if isinstance(pil_image, Image.Image): | |
pil_image = [pil_image] | |
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values | |
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=self.image_encoder.dtype)).pooler_output | |
clip_image_embeds = clip_image_embeds.to(dtype=torch.bfloat16) | |
else: | |
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16) | |
image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
return image_prompt_embeds | |
def set_scale(self, scale): | |
for attn_processor in self.pipe.transformer.attn_processors.values(): | |
if isinstance(attn_processor, IPAFluxAttnProcessor2_0): | |
attn_processor.scale = scale | |
def generate( | |
self, | |
pil_image=None, | |
clip_image_embeds=None, | |
prompt=None, | |
scale=1.0, | |
num_samples=1, | |
seed=None, | |
guidance_scale=3.5, | |
num_inference_steps=24, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
image_prompt_embeds = self.get_image_embeds( | |
pil_image=pil_image, clip_image_embeds=clip_image_embeds | |
) | |
if seed is None: | |
generator = None | |
else: | |
generator = torch.Generator(self.device).manual_seed(seed) | |
images = self.pipe( | |
prompt=prompt, | |
image_emb=image_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
return images | |
if __name__ == '__main__': | |
model_path = "black-forest-labs/FLUX.1-dev" | |
image_encoder_path = "google/siglip-so400m-patch14-384" | |
ipadapter_path = "./ip-adapter.bin" | |
transformer = FluxTransformer2DModel.from_pretrained( | |
model_path, subfolder="transformer", torch_dtype=torch.bfloat16 | |
) | |
pipe = FluxPipeline.from_pretrained( | |
model_path, transformer=transformer, torch_dtype=torch.bfloat16 | |
) | |
ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128) | |
image_dir = "./assets/images/2.jpg" | |
image_name = image_dir.split("/")[-1] | |
image = Image.open(image_dir).convert("RGB") | |
image = resize_img(image) | |
prompt = "a young girl" | |
images = ip_model.generate( | |
pil_image=image, | |
prompt=prompt, | |
scale=0.7, | |
width=960, height=1280, | |
seed=42 | |
) | |
images[0].save(f"results/{image_name}") |