|
from dataclasses import dataclass, make_dataclass
|
|
from enum import Enum
|
|
|
|
import pandas as pd
|
|
|
|
from src.about import Tasks
|
|
|
|
def fields(raw_class):
|
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
class ColumnContent:
|
|
name: str
|
|
type: str
|
|
displayed_by_default: bool
|
|
hidden: bool = False
|
|
never_hidden: bool = False
|
|
|
|
|
|
auto_eval_column_dict = []
|
|
|
|
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
|
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
|
|
|
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)])
|
|
for task in Tasks:
|
|
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
|
|
|
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
|
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
|
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
|
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
|
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
|
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
|
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
|
|
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
|
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
|
|
|
|
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class EvalQueueColumn:
|
|
model = ColumnContent("model", "markdown", True)
|
|
revision = ColumnContent("revision", "str", True)
|
|
private = ColumnContent("private", "bool", True)
|
|
precision = ColumnContent("precision", "str", True)
|
|
weight_type = ColumnContent("weight_type", "str", "Original")
|
|
status = ColumnContent("status", "str", True)
|
|
|
|
|
|
@dataclass
|
|
class ModelDetails:
|
|
name: str
|
|
display_name: str = ""
|
|
symbol: str = ""
|
|
|
|
|
|
class ModelType(Enum):
|
|
PT = ModelDetails(name="pretrained", symbol="π’")
|
|
FT = ModelDetails(name="fine-tuned", symbol="πΆ")
|
|
IFT = ModelDetails(name="instruction-tuned", symbol="β")
|
|
RL = ModelDetails(name="RL-tuned", symbol="π¦")
|
|
Unknown = ModelDetails(name="", symbol="?")
|
|
|
|
def to_str(self, separator=" "):
|
|
return f"{self.value.symbol}{separator}{self.value.name}"
|
|
|
|
@staticmethod
|
|
def from_str(type):
|
|
if "fine-tuned" in type or "πΆ" in type:
|
|
return ModelType.FT
|
|
if "pretrained" in type or "π’" in type:
|
|
return ModelType.PT
|
|
if "RL-tuned" in type or "π¦" in type:
|
|
return ModelType.RL
|
|
if "instruction-tuned" in type or "β" in type:
|
|
return ModelType.IFT
|
|
return ModelType.Unknown
|
|
|
|
class WeightType(Enum):
|
|
Adapter = ModelDetails("Adapter")
|
|
Original = ModelDetails("Original")
|
|
Delta = ModelDetails("Delta")
|
|
|
|
class Precision(Enum):
|
|
float16 = ModelDetails("float16")
|
|
bfloat16 = ModelDetails("bfloat16")
|
|
float32 = ModelDetails("float32")
|
|
|
|
|
|
|
|
Unknown = ModelDetails("?")
|
|
|
|
def from_str(precision):
|
|
if precision in ["torch.float16", "float16"]:
|
|
return Precision.float16
|
|
if precision in ["torch.bfloat16", "bfloat16"]:
|
|
return Precision.bfloat16
|
|
if precision in ["float32"]:
|
|
return Precision.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return Precision.Unknown
|
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
|
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
|
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
|
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
|
|
|
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
|
|
|
NUMERIC_INTERVALS = {
|
|
"?": pd.Interval(-1, 0, closed="right"),
|
|
"~1.5": pd.Interval(0, 2, closed="right"),
|
|
"~3": pd.Interval(2, 4, closed="right"),
|
|
"~7": pd.Interval(4, 9, closed="right"),
|
|
"~13": pd.Interval(9, 20, closed="right"),
|
|
"~35": pd.Interval(20, 45, closed="right"),
|
|
"~60": pd.Interval(45, 70, closed="right"),
|
|
"70+": pd.Interval(70, 10000, closed="right"),
|
|
}
|
|
|