|
import glob
|
|
import json
|
|
import math
|
|
import os
|
|
from dataclasses import dataclass
|
|
|
|
import dateutil
|
|
import numpy as np
|
|
|
|
from src.display.formatting import make_clickable_model
|
|
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
|
from src.submission.check_validity import is_model_on_hub
|
|
|
|
|
|
@dataclass
|
|
class EvalResult:
|
|
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
|
"""
|
|
eval_name: str
|
|
full_model: str
|
|
org: str
|
|
model: str
|
|
revision: str
|
|
results: dict
|
|
precision: Precision = Precision.Unknown
|
|
model_type: ModelType = ModelType.Unknown
|
|
weight_type: WeightType = WeightType.Original
|
|
architecture: str = "Unknown"
|
|
license: str = "?"
|
|
likes: int = 0
|
|
num_params: int = 0
|
|
date: str = ""
|
|
still_on_hub: bool = False
|
|
|
|
@classmethod
|
|
def init_from_json_file(self, json_filepath):
|
|
"""Inits the result from the specific model result file"""
|
|
with open(json_filepath) as fp:
|
|
data = json.load(fp)
|
|
|
|
config = data.get("config")
|
|
|
|
|
|
precision = Precision.from_str(config.get("model_dtype"))
|
|
|
|
|
|
org_and_model = config.get("model_name", config.get("model_args", None))
|
|
org_and_model = org_and_model.split("/", 1)
|
|
|
|
if len(org_and_model) == 1:
|
|
org = None
|
|
model = org_and_model[0]
|
|
result_key = f"{model}_{precision.value.name}"
|
|
else:
|
|
org = org_and_model[0]
|
|
model = org_and_model[1]
|
|
result_key = f"{org}_{model}_{precision.value.name}"
|
|
full_model = "/".join(org_and_model)
|
|
|
|
still_on_hub, _, model_config = is_model_on_hub(
|
|
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
|
)
|
|
architecture = "?"
|
|
if model_config is not None:
|
|
architectures = getattr(model_config, "architectures", None)
|
|
if architectures:
|
|
architecture = ";".join(architectures)
|
|
|
|
|
|
results = {}
|
|
for task in Tasks:
|
|
task = task.value
|
|
|
|
|
|
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
|
if accs.size == 0 or any([acc is None for acc in accs]):
|
|
continue
|
|
|
|
mean_acc = np.mean(accs) * 100.0
|
|
results[task.benchmark] = mean_acc
|
|
|
|
return self(
|
|
eval_name=result_key,
|
|
full_model=full_model,
|
|
org=org,
|
|
model=model,
|
|
results=results,
|
|
precision=precision,
|
|
revision= config.get("model_sha", ""),
|
|
still_on_hub=still_on_hub,
|
|
architecture=architecture
|
|
)
|
|
|
|
def update_with_request_file(self, requests_path):
|
|
"""Finds the relevant request file for the current model and updates info with it"""
|
|
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
|
|
|
try:
|
|
with open(request_file, "r") as f:
|
|
request = json.load(f)
|
|
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
|
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
|
self.license = request.get("license", "?")
|
|
self.likes = request.get("likes", 0)
|
|
self.num_params = request.get("params", 0)
|
|
self.date = request.get("submitted_time", "")
|
|
except Exception:
|
|
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
|
|
|
def to_dict(self):
|
|
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
|
data_dict = {
|
|
"eval_name": self.eval_name,
|
|
AutoEvalColumn.precision.name: self.precision.value.name,
|
|
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
|
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
|
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
|
AutoEvalColumn.architecture.name: self.architecture,
|
|
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
|
AutoEvalColumn.revision.name: self.revision,
|
|
AutoEvalColumn.average.name: average,
|
|
AutoEvalColumn.license.name: self.license,
|
|
AutoEvalColumn.likes.name: self.likes,
|
|
AutoEvalColumn.params.name: self.num_params,
|
|
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
|
}
|
|
|
|
for task in Tasks:
|
|
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
|
|
|
return data_dict
|
|
|
|
|
|
def get_request_file_for_model(requests_path, model_name, precision):
|
|
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
|
request_files = os.path.join(
|
|
requests_path,
|
|
f"{model_name}_eval_request_*.json",
|
|
)
|
|
request_files = glob.glob(request_files)
|
|
|
|
|
|
request_file = ""
|
|
request_files = sorted(request_files, reverse=True)
|
|
for tmp_request_file in request_files:
|
|
with open(tmp_request_file, "r") as f:
|
|
req_content = json.load(f)
|
|
if (
|
|
req_content["status"] in ["FINISHED"]
|
|
and req_content["precision"] == precision.split(".")[-1]
|
|
):
|
|
request_file = tmp_request_file
|
|
return request_file
|
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
|
"""From the path of the results folder root, extract all needed info for results"""
|
|
model_result_filepaths = []
|
|
|
|
for root, _, files in os.walk(results_path):
|
|
|
|
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
|
continue
|
|
|
|
|
|
try:
|
|
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
|
except dateutil.parser._parser.ParserError:
|
|
files = [files[-1]]
|
|
|
|
for file in files:
|
|
model_result_filepaths.append(os.path.join(root, file))
|
|
|
|
eval_results = {}
|
|
for model_result_filepath in model_result_filepaths:
|
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
|
eval_result.update_with_request_file(requests_path)
|
|
|
|
|
|
eval_name = eval_result.eval_name
|
|
if eval_name in eval_results.keys():
|
|
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
|
else:
|
|
eval_results[eval_name] = eval_result
|
|
|
|
results = []
|
|
for v in eval_results.values():
|
|
try:
|
|
v.to_dict()
|
|
results.append(v)
|
|
except KeyError:
|
|
continue
|
|
|
|
return results
|
|
|