Update app.py
Browse files
app.py
CHANGED
@@ -1,314 +1,314 @@
|
|
1 |
-
import subprocess
|
2 |
-
import gradio as gr
|
3 |
-
import pandas as pd
|
4 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
-
|
7 |
-
from src.about import (
|
8 |
-
CITATION_BUTTON_LABEL,
|
9 |
-
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
-
INTRODUCTION_TEXT,
|
12 |
-
LLM_BENCHMARKS_TEXT,
|
13 |
-
TITLE,
|
14 |
-
)
|
15 |
-
from src.display.css_html_js import custom_css
|
16 |
-
from src.display.utils import (
|
17 |
-
BENCHMARK_COLS,
|
18 |
-
COLS,
|
19 |
-
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
-
NUMERIC_INTERVALS,
|
22 |
-
TYPES,
|
23 |
-
AutoEvalColumn,
|
24 |
-
ModelType,
|
25 |
-
fields,
|
26 |
-
WeightType,
|
27 |
-
Precision
|
28 |
-
)
|
29 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
-
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
-
# from src.submission.submit import add_new_eval
|
32 |
-
from PIL import Image
|
33 |
-
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
|
34 |
-
import copy
|
35 |
-
|
36 |
-
def load_data(data_path):
|
37 |
-
columns = ['Unlearned_Methods','
|
38 |
-
columns_sorted = [
|
39 |
-
|
40 |
-
df = pd.read_csv(data_path).dropna()
|
41 |
-
df['Post-ASR'] = df['Post-ASR'].round(0)
|
42 |
-
|
43 |
-
# rank according to the Score column
|
44 |
-
df = df.sort_values(by='Post-ASR', ascending=False)
|
45 |
-
# reorder the columns
|
46 |
-
df = df[columns_sorted]
|
47 |
-
|
48 |
-
|
49 |
-
return df
|
50 |
-
|
51 |
-
def restart_space():
|
52 |
-
API.restart_space(repo_id=REPO_ID)
|
53 |
-
|
54 |
-
# try:
|
55 |
-
# print(EVAL_REQUESTS_PATH)
|
56 |
-
# snapshot_download(
|
57 |
-
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
58 |
-
# )
|
59 |
-
# except Exception:
|
60 |
-
# restart_space()
|
61 |
-
# try:
|
62 |
-
# print(EVAL_RESULTS_PATH)
|
63 |
-
# snapshot_download(
|
64 |
-
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
65 |
-
# )
|
66 |
-
# except Exception:
|
67 |
-
# restart_space()
|
68 |
-
|
69 |
-
|
70 |
-
# raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
71 |
-
# leaderboard_df = original_df.copy()
|
72 |
-
|
73 |
-
# (
|
74 |
-
# finished_eval_queue_df,
|
75 |
-
# running_eval_queue_df,
|
76 |
-
# pending_eval_queue_df,
|
77 |
-
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
78 |
-
|
79 |
-
all_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR','Pre-ASR','Post-FID']
|
80 |
-
show_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR','Pre-ASR','Post-FID']
|
81 |
-
TYPES = ['str', 'markdown', 'str', 'number', 'number', 'number', 'number']
|
82 |
-
files = ['
|
83 |
-
csv_path='./assets/'+files[0]+'.csv'
|
84 |
-
df_results = load_data(csv_path)
|
85 |
-
methods = list(set(df_results['Unlearned_Methods']))
|
86 |
-
df_results_init = df_results.copy()[show_columns]
|
87 |
-
|
88 |
-
def update_table(
|
89 |
-
hidden_df: pd.DataFrame,
|
90 |
-
model1_column: list,
|
91 |
-
#type_query: list,
|
92 |
-
#open_query: list,
|
93 |
-
# precision_query: str,
|
94 |
-
# size_query: list,
|
95 |
-
# show_deleted: bool,
|
96 |
-
query: str,
|
97 |
-
):
|
98 |
-
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
99 |
-
# filtered_df = filter_queries(query, filtered_df)
|
100 |
-
# df = select_columns(filtered_df, columns)
|
101 |
-
filtered_df = hidden_df.copy()
|
102 |
-
# print(open_query)
|
103 |
-
|
104 |
-
# filtered_df = filtered_df[filtered_df['Unlearned_Methods'].isin(open_query)]
|
105 |
-
# map_open = {'open': 'Yes', 'closed': 'No'}
|
106 |
-
# filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])]
|
107 |
-
filtered_df=select_columns(filtered_df,model1_column)
|
108 |
-
filtered_df = filter_queries(query, filtered_df)
|
109 |
-
# map_open = {'SD V1.4', 'SD V1.5', 'SD V2.0'}
|
110 |
-
# filtered_df = filtered_df[filtered_df["Diffusion_Models"].isin([o for o in open_query])]
|
111 |
-
# filtered_df = filtered_df[[map_columns[k] for k in columns]]
|
112 |
-
# deduplication
|
113 |
-
# df = df.drop_duplicates(subset=["Model"])
|
114 |
-
df = filtered_df.drop_duplicates()
|
115 |
-
# df = df[show_columns]
|
116 |
-
return df
|
117 |
-
|
118 |
-
|
119 |
-
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
120 |
-
return df[(df['Unlearned_Methods'].str.contains(query, case=False))]
|
121 |
-
|
122 |
-
|
123 |
-
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
124 |
-
final_df = []
|
125 |
-
if query != "":
|
126 |
-
queries = [q.strip() for q in query.split(";")]
|
127 |
-
for _q in queries:
|
128 |
-
_q = _q.strip()
|
129 |
-
if _q != "":
|
130 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
131 |
-
if len(temp_filtered_df) > 0:
|
132 |
-
final_df.append(temp_filtered_df)
|
133 |
-
if len(final_df) > 0:
|
134 |
-
filtered_df = pd.concat(final_df)
|
135 |
-
|
136 |
-
return filtered_df
|
137 |
-
|
138 |
-
def search_table_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
139 |
-
return df[(df['Diffusion_Models'].str.contains(query, case=False))]
|
140 |
-
|
141 |
-
|
142 |
-
def filter_queries_model(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
143 |
-
final_df = []
|
144 |
-
# if query != "":
|
145 |
-
# queries = [q.strip() for q in query.split(";")]
|
146 |
-
for _q in query:
|
147 |
-
print(_q)
|
148 |
-
if _q != "":
|
149 |
-
temp_filtered_df = search_table_model(filtered_df, _q)
|
150 |
-
if len(temp_filtered_df) > 0:
|
151 |
-
final_df.append(temp_filtered_df)
|
152 |
-
if len(final_df) > 0:
|
153 |
-
filtered_df = pd.concat(final_df)
|
154 |
-
|
155 |
-
return filtered_df
|
156 |
-
|
157 |
-
def select_columns(df: pd.DataFrame, columns_1: list) -> pd.DataFrame:
|
158 |
-
always_here_cols = ['Unlearned_Methods'
|
159 |
-
|
160 |
-
# We use COLS to maintain sorting
|
161 |
-
all_columns =['Pre-ASR','Post-ASR','
|
162 |
-
|
163 |
-
if (len(columns_1)) == 0:
|
164 |
-
filtered_df = df[
|
165 |
-
always_here_cols +
|
166 |
-
[c for c in all_columns if c in df.columns]
|
167 |
-
]
|
168 |
-
|
169 |
-
else:
|
170 |
-
filtered_df = df[
|
171 |
-
always_here_cols +
|
172 |
-
[c for c in all_columns if c in df.columns and (c in columns_1) ]
|
173 |
-
]
|
174 |
-
|
175 |
-
return filtered_df
|
176 |
-
|
177 |
-
|
178 |
-
demo = gr.Blocks(css=custom_css)
|
179 |
-
with demo:
|
180 |
-
gr.HTML(TITLE)
|
181 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
182 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT,elem_classes="eval-text")
|
183 |
-
|
184 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
185 |
-
with gr.TabItem("UnlearnDiffAtk Benchmark", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=0):
|
186 |
-
with gr.Row():
|
187 |
-
with gr.Column():
|
188 |
-
with gr.Row():
|
189 |
-
search_bar = gr.Textbox(
|
190 |
-
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
191 |
-
show_label=False,
|
192 |
-
elem_id="search-bar",
|
193 |
-
)
|
194 |
-
with gr.Row():
|
195 |
-
model1_column = gr.CheckboxGroup(
|
196 |
-
label="Evaluation Metrics",
|
197 |
-
choices=['Pre-ASR', 'Post-ASR','
|
198 |
-
interactive=True,
|
199 |
-
elem_id="column-select",
|
200 |
-
)
|
201 |
-
|
202 |
-
# with gr.Column(min_width=320):
|
203 |
-
# with gr.Row():
|
204 |
-
# shown_columns_1 = gr.CheckboxGroup(
|
205 |
-
# choices=["Church","Parachute","Tench", "Garbage Truck"],
|
206 |
-
# label="Undersirable Objects",
|
207 |
-
# elem_id="column-object",
|
208 |
-
# interactive=True,
|
209 |
-
# )
|
210 |
-
# with gr.Row():
|
211 |
-
# shown_columns_2 = gr.CheckboxGroup(
|
212 |
-
# choices=["Van Gogh"],
|
213 |
-
# label="Undersirable Styles",
|
214 |
-
# elem_id="column-style",
|
215 |
-
# interactive=True,
|
216 |
-
# )
|
217 |
-
# with gr.Row():
|
218 |
-
# shown_columns_3 = gr.CheckboxGroup(
|
219 |
-
# choices=["Violence","Illegal Activity","Nudity"],
|
220 |
-
# label="Undersirable Concepts (Outputs that may be offensive in nature)",
|
221 |
-
# elem_id="column-select",
|
222 |
-
# interactive=True,
|
223 |
-
# )
|
224 |
-
# with gr.Row():
|
225 |
-
# shown_columns_4 = gr.Slider(
|
226 |
-
# 1, 100, value=40,
|
227 |
-
# step=1, label="Attacking Steps", info="Choose between 1 and 100",
|
228 |
-
# interactive=True,)
|
229 |
-
for i in range(len(files)):
|
230 |
-
if files[i] == "church":
|
231 |
-
name = "### Unlearned Objects "+" Church"
|
232 |
-
csv_path = './assets/'+files[i]+'.csv'
|
233 |
-
elif files[i] == 'garbage':
|
234 |
-
name = "### Unlearned Objects "+" Garbage"
|
235 |
-
csv_path = './assets/'+files[i]+'.csv'
|
236 |
-
elif files[i] == 'tench':
|
237 |
-
name = "### Unlearned Objects "+" Tench"
|
238 |
-
csv_path = './assets/'+files[i]+'.csv'
|
239 |
-
elif files[i] == 'parachute':
|
240 |
-
name = "### Unlearned Objects "+" Parachute"
|
241 |
-
csv_path = './assets/'+files[i]+'.csv'
|
242 |
-
elif files[i] == 'vangogh':
|
243 |
-
name = "### Unlearned
|
244 |
-
csv_path = './assets/'+files[i]+'.csv'
|
245 |
-
elif files[i] == 'nudity':
|
246 |
-
name = "### Unlearned Concepts "+" Nudity"
|
247 |
-
csv_path = './assets/'+files[i]+'.csv'
|
248 |
-
elif files[i] == 'violence':
|
249 |
-
|
250 |
-
|
251 |
-
elif files[i] == 'illegal_activity':
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
gr.Markdown(name)
|
257 |
-
df_results = load_data(csv_path)
|
258 |
-
df_results_init = df_results.copy()[show_columns]
|
259 |
-
leaderboard_table = gr.components.Dataframe(
|
260 |
-
value = df_results,
|
261 |
-
datatype = TYPES,
|
262 |
-
elem_id = "leaderboard-table",
|
263 |
-
interactive = False,
|
264 |
-
visible=True,
|
265 |
-
)
|
266 |
-
|
267 |
-
|
268 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
269 |
-
value=df_results_init,
|
270 |
-
interactive=False,
|
271 |
-
visible=False,
|
272 |
-
)
|
273 |
-
|
274 |
-
search_bar.submit(
|
275 |
-
update_table,
|
276 |
-
[
|
277 |
-
|
278 |
-
hidden_leaderboard_table_for_search,
|
279 |
-
model1_column,
|
280 |
-
search_bar,
|
281 |
-
],
|
282 |
-
leaderboard_table,
|
283 |
-
)
|
284 |
-
|
285 |
-
for selector in [model1_column]:
|
286 |
-
selector.change(
|
287 |
-
update_table,
|
288 |
-
[
|
289 |
-
hidden_leaderboard_table_for_search,
|
290 |
-
model1_column,
|
291 |
-
search_bar,
|
292 |
-
],
|
293 |
-
leaderboard_table,
|
294 |
-
)
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
with gr.Row():
|
302 |
-
with gr.Accordion("π Citation", open=True):
|
303 |
-
citation_button = gr.Textbox(
|
304 |
-
value=CITATION_BUTTON_TEXT,
|
305 |
-
label=CITATION_BUTTON_LABEL,
|
306 |
-
lines=10,
|
307 |
-
elem_id="citation-button",
|
308 |
-
show_copy_button=True,
|
309 |
-
)
|
310 |
-
|
311 |
-
scheduler = BackgroundScheduler()
|
312 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
313 |
-
scheduler.start()
|
314 |
demo.queue().launch(share=True)
|
|
|
1 |
+
import subprocess
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
|
7 |
+
from src.about import (
|
8 |
+
CITATION_BUTTON_LABEL,
|
9 |
+
CITATION_BUTTON_TEXT,
|
10 |
+
EVALUATION_QUEUE_TEXT,
|
11 |
+
INTRODUCTION_TEXT,
|
12 |
+
LLM_BENCHMARKS_TEXT,
|
13 |
+
TITLE,
|
14 |
+
)
|
15 |
+
from src.display.css_html_js import custom_css
|
16 |
+
from src.display.utils import (
|
17 |
+
BENCHMARK_COLS,
|
18 |
+
COLS,
|
19 |
+
EVAL_COLS,
|
20 |
+
EVAL_TYPES,
|
21 |
+
NUMERIC_INTERVALS,
|
22 |
+
TYPES,
|
23 |
+
AutoEvalColumn,
|
24 |
+
ModelType,
|
25 |
+
fields,
|
26 |
+
WeightType,
|
27 |
+
Precision
|
28 |
+
)
|
29 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
+
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
+
# from src.submission.submit import add_new_eval
|
32 |
+
# from PIL import Image
|
33 |
+
# from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
|
34 |
+
# import copy
|
35 |
+
|
36 |
+
def load_data(data_path):
|
37 |
+
columns = ['Unlearned_Methods','Pre-ASR', 'Post-ASR','FID', 'Clip-Score']
|
38 |
+
columns_sorted = [Unlearned_Methods','Pre-ASR', 'Post-ASR','FID', 'Clip-Score']
|
39 |
+
|
40 |
+
df = pd.read_csv(data_path).dropna()
|
41 |
+
df['Post-ASR'] = df['Post-ASR'].round(0)
|
42 |
+
|
43 |
+
# rank according to the Score column
|
44 |
+
df = df.sort_values(by='Post-ASR', ascending=False)
|
45 |
+
# reorder the columns
|
46 |
+
df = df[columns_sorted]
|
47 |
+
|
48 |
+
|
49 |
+
return df
|
50 |
+
|
51 |
+
def restart_space():
|
52 |
+
API.restart_space(repo_id=REPO_ID)
|
53 |
+
|
54 |
+
# try:
|
55 |
+
# print(EVAL_REQUESTS_PATH)
|
56 |
+
# snapshot_download(
|
57 |
+
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
58 |
+
# )
|
59 |
+
# except Exception:
|
60 |
+
# restart_space()
|
61 |
+
# try:
|
62 |
+
# print(EVAL_RESULTS_PATH)
|
63 |
+
# snapshot_download(
|
64 |
+
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
65 |
+
# )
|
66 |
+
# except Exception:
|
67 |
+
# restart_space()
|
68 |
+
|
69 |
+
|
70 |
+
# raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
71 |
+
# leaderboard_df = original_df.copy()
|
72 |
+
|
73 |
+
# (
|
74 |
+
# finished_eval_queue_df,
|
75 |
+
# running_eval_queue_df,
|
76 |
+
# pending_eval_queue_df,
|
77 |
+
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
78 |
+
|
79 |
+
all_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR','Pre-ASR','Post-FID']
|
80 |
+
show_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR','Pre-ASR','Post-FID']
|
81 |
+
TYPES = ['str', 'markdown', 'str', 'number', 'number', 'number', 'number']
|
82 |
+
files = ['vangogh', 'nudity','church','garbage','parachute','tench', 'vangogh']
|
83 |
+
csv_path='./assets/'+files[0]+'.csv'
|
84 |
+
df_results = load_data(csv_path)
|
85 |
+
methods = list(set(df_results['Unlearned_Methods']))
|
86 |
+
df_results_init = df_results.copy()[show_columns]
|
87 |
+
|
88 |
+
def update_table(
|
89 |
+
hidden_df: pd.DataFrame,
|
90 |
+
model1_column: list,
|
91 |
+
#type_query: list,
|
92 |
+
#open_query: list,
|
93 |
+
# precision_query: str,
|
94 |
+
# size_query: list,
|
95 |
+
# show_deleted: bool,
|
96 |
+
query: str,
|
97 |
+
):
|
98 |
+
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
99 |
+
# filtered_df = filter_queries(query, filtered_df)
|
100 |
+
# df = select_columns(filtered_df, columns)
|
101 |
+
filtered_df = hidden_df.copy()
|
102 |
+
# print(open_query)
|
103 |
+
|
104 |
+
# filtered_df = filtered_df[filtered_df['Unlearned_Methods'].isin(open_query)]
|
105 |
+
# map_open = {'open': 'Yes', 'closed': 'No'}
|
106 |
+
# filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])]
|
107 |
+
filtered_df=select_columns(filtered_df,model1_column)
|
108 |
+
filtered_df = filter_queries(query, filtered_df)
|
109 |
+
# map_open = {'SD V1.4', 'SD V1.5', 'SD V2.0'}
|
110 |
+
# filtered_df = filtered_df[filtered_df["Diffusion_Models"].isin([o for o in open_query])]
|
111 |
+
# filtered_df = filtered_df[[map_columns[k] for k in columns]]
|
112 |
+
# deduplication
|
113 |
+
# df = df.drop_duplicates(subset=["Model"])
|
114 |
+
df = filtered_df.drop_duplicates()
|
115 |
+
# df = df[show_columns]
|
116 |
+
return df
|
117 |
+
|
118 |
+
|
119 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
120 |
+
return df[(df['Unlearned_Methods'].str.contains(query, case=False))]
|
121 |
+
|
122 |
+
|
123 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
124 |
+
final_df = []
|
125 |
+
if query != "":
|
126 |
+
queries = [q.strip() for q in query.split(";")]
|
127 |
+
for _q in queries:
|
128 |
+
_q = _q.strip()
|
129 |
+
if _q != "":
|
130 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
131 |
+
if len(temp_filtered_df) > 0:
|
132 |
+
final_df.append(temp_filtered_df)
|
133 |
+
if len(final_df) > 0:
|
134 |
+
filtered_df = pd.concat(final_df)
|
135 |
+
|
136 |
+
return filtered_df
|
137 |
+
|
138 |
+
def search_table_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
139 |
+
return df[(df['Diffusion_Models'].str.contains(query, case=False))]
|
140 |
+
|
141 |
+
|
142 |
+
def filter_queries_model(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
143 |
+
final_df = []
|
144 |
+
# if query != "":
|
145 |
+
# queries = [q.strip() for q in query.split(";")]
|
146 |
+
for _q in query:
|
147 |
+
print(_q)
|
148 |
+
if _q != "":
|
149 |
+
temp_filtered_df = search_table_model(filtered_df, _q)
|
150 |
+
if len(temp_filtered_df) > 0:
|
151 |
+
final_df.append(temp_filtered_df)
|
152 |
+
if len(final_df) > 0:
|
153 |
+
filtered_df = pd.concat(final_df)
|
154 |
+
|
155 |
+
return filtered_df
|
156 |
+
|
157 |
+
def select_columns(df: pd.DataFrame, columns_1: list) -> pd.DataFrame:
|
158 |
+
always_here_cols = ['Unlearned_Methods']
|
159 |
+
|
160 |
+
# We use COLS to maintain sorting
|
161 |
+
all_columns =['Pre-ASR','Post-ASR','FID','Clip-Score']
|
162 |
+
|
163 |
+
if (len(columns_1)) == 0:
|
164 |
+
filtered_df = df[
|
165 |
+
always_here_cols +
|
166 |
+
[c for c in all_columns if c in df.columns]
|
167 |
+
]
|
168 |
+
|
169 |
+
else:
|
170 |
+
filtered_df = df[
|
171 |
+
always_here_cols +
|
172 |
+
[c for c in all_columns if c in df.columns and (c in columns_1) ]
|
173 |
+
]
|
174 |
+
|
175 |
+
return filtered_df
|
176 |
+
|
177 |
+
|
178 |
+
demo = gr.Blocks(css=custom_css)
|
179 |
+
with demo:
|
180 |
+
gr.HTML(TITLE)
|
181 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
182 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT,elem_classes="eval-text")
|
183 |
+
|
184 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
185 |
+
with gr.TabItem("UnlearnDiffAtk Benchmark", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=0):
|
186 |
+
with gr.Row():
|
187 |
+
with gr.Column():
|
188 |
+
with gr.Row():
|
189 |
+
search_bar = gr.Textbox(
|
190 |
+
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
191 |
+
show_label=False,
|
192 |
+
elem_id="search-bar",
|
193 |
+
)
|
194 |
+
with gr.Row():
|
195 |
+
model1_column = gr.CheckboxGroup(
|
196 |
+
label="Evaluation Metrics",
|
197 |
+
choices=['Pre-ASR', 'Post-ASR','FID','Clip-score'],
|
198 |
+
interactive=True,
|
199 |
+
elem_id="column-select",
|
200 |
+
)
|
201 |
+
|
202 |
+
# with gr.Column(min_width=320):
|
203 |
+
# with gr.Row():
|
204 |
+
# shown_columns_1 = gr.CheckboxGroup(
|
205 |
+
# choices=["Church","Parachute","Tench", "Garbage Truck"],
|
206 |
+
# label="Undersirable Objects",
|
207 |
+
# elem_id="column-object",
|
208 |
+
# interactive=True,
|
209 |
+
# )
|
210 |
+
# with gr.Row():
|
211 |
+
# shown_columns_2 = gr.CheckboxGroup(
|
212 |
+
# choices=["Van Gogh"],
|
213 |
+
# label="Undersirable Styles",
|
214 |
+
# elem_id="column-style",
|
215 |
+
# interactive=True,
|
216 |
+
# )
|
217 |
+
# with gr.Row():
|
218 |
+
# shown_columns_3 = gr.CheckboxGroup(
|
219 |
+
# choices=["Violence","Illegal Activity","Nudity"],
|
220 |
+
# label="Undersirable Concepts (Outputs that may be offensive in nature)",
|
221 |
+
# elem_id="column-select",
|
222 |
+
# interactive=True,
|
223 |
+
# )
|
224 |
+
# with gr.Row():
|
225 |
+
# shown_columns_4 = gr.Slider(
|
226 |
+
# 1, 100, value=40,
|
227 |
+
# step=1, label="Attacking Steps", info="Choose between 1 and 100",
|
228 |
+
# interactive=True,)
|
229 |
+
for i in range(len(files)):
|
230 |
+
if files[i] == "church":
|
231 |
+
name = "### [Unlearned Objects] "+" Church"
|
232 |
+
csv_path = './assets/'+files[i]+'.csv'
|
233 |
+
elif files[i] == 'garbage':
|
234 |
+
name = "### [Unlearned Objects] "+" Garbage"
|
235 |
+
csv_path = './assets/'+files[i]+'.csv'
|
236 |
+
elif files[i] == 'tench':
|
237 |
+
name = "### [Unlearned Objects] "+" Tench"
|
238 |
+
csv_path = './assets/'+files[i]+'.csv'
|
239 |
+
elif files[i] == 'parachute':
|
240 |
+
name = "### [Unlearned Objects] "+" Parachute"
|
241 |
+
csv_path = './assets/'+files[i]+'.csv'
|
242 |
+
elif files[i] == 'vangogh':
|
243 |
+
name = "### [Unlearned Style] "+" Van Gogh"
|
244 |
+
csv_path = './assets/'+files[i]+'.csv'
|
245 |
+
elif files[i] == 'nudity':
|
246 |
+
name = "### Unlearned Concepts "+" Nudity"
|
247 |
+
csv_path = './assets/'+files[i]+'.csv'
|
248 |
+
# elif files[i] == 'violence':
|
249 |
+
# name = "### Unlearned Concepts "+" Violence"
|
250 |
+
# csv_path = './assets/'+files[i]+'.csv'
|
251 |
+
# elif files[i] == 'illegal_activity':
|
252 |
+
# name = "### Unlearned Concepts "+" Illgal Activity"
|
253 |
+
# csv_path = './assets/'+files[i]+'.csv'
|
254 |
+
|
255 |
+
|
256 |
+
gr.Markdown(name)
|
257 |
+
df_results = load_data(csv_path)
|
258 |
+
df_results_init = df_results.copy()[show_columns]
|
259 |
+
leaderboard_table = gr.components.Dataframe(
|
260 |
+
value = df_results,
|
261 |
+
datatype = TYPES,
|
262 |
+
elem_id = "leaderboard-table",
|
263 |
+
interactive = False,
|
264 |
+
visible=True,
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
269 |
+
value=df_results_init,
|
270 |
+
interactive=False,
|
271 |
+
visible=False,
|
272 |
+
)
|
273 |
+
|
274 |
+
search_bar.submit(
|
275 |
+
update_table,
|
276 |
+
[
|
277 |
+
|
278 |
+
hidden_leaderboard_table_for_search,
|
279 |
+
model1_column,
|
280 |
+
search_bar,
|
281 |
+
],
|
282 |
+
leaderboard_table,
|
283 |
+
)
|
284 |
+
|
285 |
+
for selector in [model1_column]:
|
286 |
+
selector.change(
|
287 |
+
update_table,
|
288 |
+
[
|
289 |
+
hidden_leaderboard_table_for_search,
|
290 |
+
model1_column,
|
291 |
+
search_bar,
|
292 |
+
],
|
293 |
+
leaderboard_table,
|
294 |
+
)
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
with gr.Row():
|
302 |
+
with gr.Accordion("π Citation", open=True):
|
303 |
+
citation_button = gr.Textbox(
|
304 |
+
value=CITATION_BUTTON_TEXT,
|
305 |
+
label=CITATION_BUTTON_LABEL,
|
306 |
+
lines=10,
|
307 |
+
elem_id="citation-button",
|
308 |
+
show_copy_button=True,
|
309 |
+
)
|
310 |
+
|
311 |
+
scheduler = BackgroundScheduler()
|
312 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
313 |
+
scheduler.start()
|
314 |
demo.queue().launch(share=True)
|