Update bias_auc.py
Browse filesupdated _KWARGS_DESCRIPTION
- bias_auc.py +37 -4
bias_auc.py
CHANGED
@@ -13,7 +13,7 @@ classifier’s score distribution can vary across designated groups.
|
|
13 |
The following are computed:
|
14 |
|
15 |
- BNSP (Background Negative, Subgroup Positive); and
|
16 |
-
- BPSN (Background Positive, Subgroup Negative) AUC
|
17 |
|
18 |
"""
|
19 |
|
@@ -28,9 +28,42 @@ _CITATION = """\
|
|
28 |
"""
|
29 |
|
30 |
_KWARGS_DESCRIPTION = """\
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
"""
|
35 |
|
36 |
class BiasAUC(evaluate.Metric):
|
|
|
13 |
The following are computed:
|
14 |
|
15 |
- BNSP (Background Negative, Subgroup Positive); and
|
16 |
+
- BPSN (Background Positive, Subgroup Negative) AUC
|
17 |
|
18 |
"""
|
19 |
|
|
|
28 |
"""
|
29 |
|
30 |
_KWARGS_DESCRIPTION = """\
|
31 |
+
|
32 |
+
Args:
|
33 |
+
target list[list[str]]: list containing list of group targeted for each item
|
34 |
+
label list[int]: list containing label index for each item
|
35 |
+
output list[list[float]]: list of model output values for each
|
36 |
+
|
37 |
+
Returns (for each subgroup in target):
|
38 |
+
'Subgroup' : Subgroup AUC score,
|
39 |
+
'BPSN' : BPSN (Background Positive, Subgroup Negative) AUC,
|
40 |
+
'BNSP' : BNSP (Background Negative, Subgroup Positive) AUC score,
|
41 |
+
|
42 |
+
|
43 |
+
Example:
|
44 |
+
>>> from evaluate import load
|
45 |
+
|
46 |
+
>>> target = [['Islam'],
|
47 |
+
... ['Sexuality'],
|
48 |
+
... ['Sexuality'],
|
49 |
+
... ['Islam']]
|
50 |
+
|
51 |
+
>>> label = [0, 0, 1, 1]
|
52 |
+
|
53 |
+
>>> output = [[0.44452348351478577, 0.5554765462875366],
|
54 |
+
... [0.4341845214366913, 0.5658154487609863],
|
55 |
+
... [0.400595098733902, 0.5994048714637756],
|
56 |
+
... [0.3840397894382477, 0.6159601807594299]]
|
57 |
+
|
58 |
+
>>> metric = load('Intel/bias_auc')
|
59 |
+
>>> metric.add_batch(target=target,
|
60 |
+
label=label,
|
61 |
+
output=output)
|
62 |
+
>>> metric.compute(target=a,
|
63 |
+
label=b,
|
64 |
+
output=c,
|
65 |
+
subgroups = None)
|
66 |
+
|
67 |
"""
|
68 |
|
69 |
class BiasAUC(evaluate.Metric):
|