--- title: Bias AUC emoji: 🏆 colorFrom: gray colorTo: blue sdk: static pinned: false license: apache-2.0 --- # Bias AUC ## Description Suite of threshold-agnostic metrics that provide a nuanced view of this unintended bias, by considering the various ways that a classifier’s score distribution can vary across designated groups. The following are computed: - Subgroup AUC - BPSN (Background Positive, Subgroup Negative) AUC - BNSP (Background Negative, Subgroup Positive) AUC - GMB (Generalized Mean of Bias) AUC ## How to use ```python from evaluate import load target = [['Islam'], ['Sexuality'], ['Sexuality'], ['Islam']] label = [0, 0, 1, 1] output = [[0.44452348351478577, 0.5554765462875366], [0.4341845214366913, 0.5658154487609863], [0.400595098733902, 0.5994048714637756], [0.3840397894382477, 0.6159601807594299]] metric = load('Intel/bias_auc') metric.add_batch(target=target, label=label, output=output) subgroups = set(group for group_list in a for group in group_list) - set(['Disability']) metric.compute(target=a, label=b, output=c, subgroups = None) ```