Spaces:
Runtime error
Runtime error
Upload FinBERT_training.py
Browse files- FinBERT_training.py +82 -0
FinBERT_training.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
3 |
+
os.environ['WANDB_DISABLED'] = "true"
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.preprocessing import LabelEncoder
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from transformers import (
|
8 |
+
AutoTokenizer,
|
9 |
+
DataCollatorWithPadding,
|
10 |
+
TrainingArguments,
|
11 |
+
Trainer,
|
12 |
+
AutoModelForSequenceClassification
|
13 |
+
)
|
14 |
+
from datasets import Dataset
|
15 |
+
|
16 |
+
#######################################
|
17 |
+
########## FinBERT training ###########
|
18 |
+
#######################################
|
19 |
+
|
20 |
+
class args:
|
21 |
+
model = 'ProsusAI/finbert'
|
22 |
+
|
23 |
+
df = pd.read_csv('all-data.csv',
|
24 |
+
names = ['labels','messages'],
|
25 |
+
encoding='ISO-8859-1')
|
26 |
+
|
27 |
+
df = df[['messages', 'labels']]
|
28 |
+
|
29 |
+
le = LabelEncoder()
|
30 |
+
df['labels'] = le.fit_transform(df['labels'])
|
31 |
+
|
32 |
+
X, y = df['messages'].values, df['labels'].values
|
33 |
+
|
34 |
+
xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.1)
|
35 |
+
xtrain, xvalid, ytrain, yvalid = train_test_split(xtrain, ytrain, test_size=0.2)
|
36 |
+
|
37 |
+
train_dataset_raw = Dataset.from_dict({'text':xtrain, 'labels':ytrain})
|
38 |
+
valid_dataset_raw = Dataset.from_dict({'text':xvalid, 'labels':yvalid})
|
39 |
+
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
41 |
+
|
42 |
+
def tokenize_fn(examples):
|
43 |
+
return tokenizer(examples['text'], truncation=True)
|
44 |
+
|
45 |
+
train_dataset = train_dataset_raw.map(tokenize_fn, batched=True)
|
46 |
+
valid_dataset = valid_dataset_raw.map(tokenize_fn, batched=True)
|
47 |
+
|
48 |
+
data_collator = DataCollatorWithPadding(tokenizer)
|
49 |
+
|
50 |
+
model = AutoModelForSequenceClassification.from_pretrained(args.model)
|
51 |
+
|
52 |
+
train_args = TrainingArguments(
|
53 |
+
'./Finbert Trained/',
|
54 |
+
per_device_train_batch_size=16,
|
55 |
+
per_device_eval_batch_size=2*16,
|
56 |
+
num_train_epochs=5,
|
57 |
+
learning_rate=2e-5,
|
58 |
+
weight_decay=0.01,
|
59 |
+
warmup_ratio=0.1,
|
60 |
+
do_eval=True,
|
61 |
+
do_train=True,
|
62 |
+
do_predict=True,
|
63 |
+
evaluation_strategy='epoch',
|
64 |
+
save_strategy="no",
|
65 |
+
)
|
66 |
+
|
67 |
+
trainer = Trainer(
|
68 |
+
model,
|
69 |
+
train_args,
|
70 |
+
train_dataset=train_dataset,
|
71 |
+
eval_dataset=valid_dataset,
|
72 |
+
data_collator=data_collator,
|
73 |
+
tokenizer=tokenizer
|
74 |
+
)
|
75 |
+
|
76 |
+
trainer.train()
|
77 |
+
|
78 |
+
# saving the model and the weights
|
79 |
+
model.save_pretrained('fine_tuned_FinBERT')
|
80 |
+
# saving the tokenizer
|
81 |
+
tokenizer.save_pretrained("fine_tuned_FinBERT/tokenizer/")
|
82 |
+
|