File size: 8,166 Bytes
99e744f c293aab 99e744f 0528be1 c293aab 99e744f 0528be1 99e744f 0528be1 c293aab 99e744f c293aab 1df85e0 c293aab 99e744f c293aab 99e744f c293aab 99e744f c293aab 1df85e0 c293aab 052ff21 c293aab 052ff21 c293aab 052ff21 c293aab 1df85e0 c293aab 1df85e0 99e744f 0528be1 052ff21 0528be1 c293aab 0528be1 99e744f 0528be1 99e744f 0528be1 99e744f 0528be1 99e744f c293aab 99e744f c293aab 99e744f c293aab 99e744f c293aab 99e744f c293aab 99e744f c293aab 99e744f c293aab 99e744f 4cd6173 99e744f c293aab 99e744f c293aab 99e744f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import datetime
import os
import time
import logging
import nltk
import validators
import streamlit as st
from summarizer import summarizer_init, summarizer_summarize
from config import MODELS
from warnings import filterwarnings
filterwarnings("ignore")
from utils import (
clean_text,
fetch_article_text,
preprocess_text_for_abstractive_summarization,
read_text_from_file,
)
# from rouge import Rouge
logger = logging.getLogger(__name__)
def initialize_app():
nltk.download("punkt")
SESSION_DEFAULTS = {
"model_type": "local",
"model_name": "Boardpac summarizer v1",
"summarizer_type": "Map Reduce",
"is_parameters_changed":False,
# "user_question":'',
'openai_api_key':'',
}
for k, v in SESSION_DEFAULTS.items():
if k not in st.session_state:
st.session_state[k] = v
# init_summarizer(st.session_state.model_name,api_key=None)
@st.cache_resource
def init_summarizer(model_name,api_key=None):
with st.spinner(
text="initialising the summarizer. This might take a few seconds ..."
):
model_type = "local"
if model_name == "OpenAI":
model_type = "openai"
model_path = MODELS[model_name]
if model_type == "openai":
#validation logic
api_key = st.session_state.openai_api_key
tokenizer,base_summarizer = summarizer_init(model_path,model_type,api_key)
else:
logger.info(f"Model for summarization : {model_path}")
tokenizer,base_summarizer = summarizer_init(model_path, model_type)
alert = st.success("summarizer initialised")
time.sleep(1) # Wait for 1 seconds
alert.empty() # Clear the alert
return model_type, tokenizer, base_summarizer
def update_parameters_change():
st.session_state.is_parameters_changed = True
def parameters_change_button(model_name, summarizer_type):
st.session_state.model_name = model_name
st.session_state.summarizer_type = summarizer_type
st.session_state.is_parameters_changed = False
# init_summarizer(model_name,api_key=None)
alert = st.success("chat parameters updated")
time.sleep(2) # Wait for 1 seconds
alert.empty() # Clear the alert
import re
def is_valid_open_ai_api_key(secretKey):
if re.search("^sk-[a-zA-Z0-9]{32,}$", secretKey ):
return True
else: return False
def side_bar():
with st.sidebar:
st.subheader("Model parameters")
with st.form('param_form'):
# st.info('Info: use openai chat model for best results')
model_name = st.selectbox(
"Summary model",
MODELS,
# options=["long-t5 v0", "long-t5 v1", "pegasus-x-large v1", "OpenAI"],
key="Model Name",
help="Select the LLM model for summarization",
# on_change=update_parameters_change,
)
summarizer_type = st.selectbox(
"Summarizer Type for Long Text",
# options=["Map Reduce", "Refine"]
options=["Map Reduce"]
)
submitted = st.form_submit_button(
"Save Parameters",
# on_click=update_parameters_change
disabled = True
)
# if submitted:
# parameters_change_button(model_name, summarizer_type)
st.markdown("\n")
if st.session_state.model_name == 'openai':
with st.form('openai api key'):
api_key = st.text_input(
"Enter openai api key",
type="password",
value=st.session_state.openai_api_key,
help="enter an openai api key created from 'https://platform.openai.com/account/api-keys'",
)
submit_key = st.form_submit_button(
"Save key",
# on_click=update_parameters_change
)
if submit_key:
st.session_state.openai_api_key = api_key
# st.text(st.session_state.openai_api_key)
alert = st.success("openai api key updated")
time.sleep(1) # Wait for 3 seconds
alert.empty() # Clear the alert
st.markdown(
"### How to use\n"
"1. Select the Summarization model\n" # noqa: E501
# "1. If selected model asks for a api key enter a valid api key.\n" # noqa: E501
"1. Enter the text to get the summary."
)
st.markdown("---")
st.markdown("""
This app supports text in the following formats:
- Raw text in text box
- .txt, .pdf, .docx file formats
"""
# - URL of article/news to be summarized
)
def load_app():
st.title("Text Summarizer 📝")
# inp_text = st.text_input("Enter text or a url here")
# inp_text = st.text_input(
# "Enter text or a url here"
# )
inp_text = st.text_area(
"Enter text here"
)
st.markdown(
"<h4 style='text-align: center; color: green;'>OR</h4>",
unsafe_allow_html=True,
)
uploaded_file = st.file_uploader(
"Upload a .txt, .pdf, .docx file for summarization"
)
is_url = validators.url(inp_text)
if is_url:
# complete text, chunks to summarize (list of sentences for long docs)
logger.info("Text Input Type: URL")
text, cleaned_txt = fetch_article_text(url=inp_text)
elif uploaded_file:
logger.info("Text Input Type: FILE")
cleaned_txt = read_text_from_file(uploaded_file)
cleaned_txt = clean_text(cleaned_txt)
else:
logger.info("Text Input Type: INPUT TEXT")
cleaned_txt = clean_text(inp_text)
# view summarized text (expander)
with st.expander("View input text"):
if is_url:
st.write(cleaned_txt[0])
else:
st.write(cleaned_txt)
submitted = st.button("Summarize")
if submitted:
if is_url:
text_to_summarize = " ".join([txt for txt in cleaned_txt])
else:
text_to_summarize = cleaned_txt
submit_text_to_summarize(text_to_summarize)
def submit_text_to_summarize(text_to_summarize):
summarized_text, time = get_summary(text_to_summarize)
display_output(summarized_text,time)
def get_summary(text_to_summarize):
model_name = st.session_state.model_name
summarizer_type = st.session_state.summarizer_type
model_type, tokenizer, base_summarizer = init_summarizer(model_name,api_key=None)
logger.info(f"Model Name: {model_name}")
logger.info(f"Summarization Type for Long Text: {summarizer_type}")
with st.spinner(
text="Creating summary. This might take a few seconds ..."
):
if summarizer_type == "Refine":
# summarized_text, time = summarizer.summarize(text_to_summarize,"refine")
summarized_text, time = summarizer_summarize(model_type,tokenizer, base_summarizer, text_to_summarize ,summarizer_type = "refine")
return summarized_text, time
else :
# summarized_text, time = summarizer.summarize(text_to_summarize,"map_reduce")
summarized_text, time = summarizer_summarize(model_type,tokenizer, base_summarizer, text_to_summarize ,summarizer_type = "map_reduce")
return summarized_text, time
def display_output(summarized_text,time):
logger.info(f"SUMMARY: {summarized_text}")
logger.info(f"Summary took {time}s")
st.subheader("Summarized text")
st.info(f"{summarized_text}")
st.markdown(f"Time: {time}s")
def main():
initialize_app()
side_bar()
load_app()
# chat_body()
if __name__ == "__main__":
main()
# text_to_summarize, model_name, summarizer_type, summarize = load_app()
# summarized_text,time = get_summary(text_to_summarize, model_name, summarizer_type, summarize)
# display_output(summarized_text,time)
|